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ABSTRACT

This dissertation tackles the online estimation of synchronous machines’ power

subsystems electromechanical models using the output based Phasor Measurements Units

(PMUs) data while disregarding any inside data. The research develops state space models

and estimates their parameters and states. The research tests the developed algorithms

against models of a higher and of the same complexity as the estimated models.

The dissertation explores two estimations approaches using the PMUs data: i)non-

linear Kalman filters namely the Extended Kalman Filter (EKF) and then the Unscented

Kalman Filter (UKF) and ii) Least Squares Estimation (LSE) with Finite Differences (FN)

and then with System Identification. The EKF based research i) establishes a decoupling

technique for the subsystem the rest of the power system ii) finds the maximum number

of parameters to estimate for classical machine model and iii) estimates such parameters

. The UKF based research i) estimates a set of electromechanical parameters and states

for the flux decay model and ii) shows the advantage of using a dual estimation filter with

colored noise to solve the difficulty of some simultaneous state and parameter estimation.

The LSE with FN estimation i) evaluates numerically the state space differential

equations and transform the problem to an overestimated linear system whose parameters

can be estimated, ii) carries out sensitivity studies evaluating the impact of operating

conditions and iii) addresses the requirements for implementation on real data taken from

the electric grid of the United States. The System Identification method i) develops a

linearized electromechanical model, ii) completes a parameters sub-set selection study using

si8ngular values decomposition, iii) estimates the parameters of the proposed model and

iv) validates its output versus the measured output.

viii
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CHAPTER 1: INTRODUCTION

1.1 Phasor Measurement Units

Phasor Measurement Unit (PMU) is a fast and synchronized measurement device

for the positive sequence phasor data of voltages and currents [2]. The measurements

sampling rate can be 1000 Hz and its reporting rate can be 60 Hz (even bigger sometimes)

[2]. The synchronization is achieved by a precise time stamp attached to every measurement

record. The time stamp comes from a clock augmented by Global Positioning System

(GPS) in order to ensure its precision. PMU diagram block is shown in Fig. 1.1 (from [3]).

Figure 6: Functional block diagram of the elements in a 
Phasor Measurement Unit.  The general structure is 

similar to many power system relays and digital fault 

recorders. 

STANDARDS 

 There are two IEEE standards which are relevant to 

the present subject.  The first one is a general transient 

data recording file format standard called ‘COMTRADE’, 

and the second is the standard applicable to the PMU 

technology: ‘SYNCHROPHASOR’. 

 The COMTRADE standard has its origin in a 

working group report of CIGRE study committee SC34.  

In an appendix to that report the basic structure of this 

standard was developed.  Later IEEE formed a working 

group to create the standard which has been revised and 

simultaneously accepted as an IEC standard. 

 The SYNCHROPHASOR standard was motivated by 

the wish of PMU users to have interoperability of PMUs 

made by different manufacturers.  This standard is based 

upon the COMTRADE standard, and was formulated by 

experts in the Power System Relaying Committee of IEEE 

Power Engineering Society  

APPLICATIONS ~ STATE ESTIMATION 

 Modern state estimation techniques were developed 

in 1970s. The techniques that evolved depended upon 

measuring active and reactive power flows and voltage 

magnitudes at substations, and then communicating them 

to a central site for processing. 

 This is still the technology in use today in most 

power systems.  The fact that the data is scanned over a 

considerable period (seconds to minutes) means that the 

calculated state is at best an approximation to averaged 

system state.  The estimates that are produced are referred 

to as “Static State Estimates”. 

 Synchronized phasor measurements of positive 

sequence bus voltages (and currents) directly, are a natural 

vehicle for state estimation or state measurement 

applications.  If there were no existing state estimation 

software in an EMS center, a PMU only system would be 

a logical choice. Positive sequence voltage and currents 

lead to a linear state estimator. 

Figure 7: State estimation formalism in traditional 

methods using scanned data and non-linear state 

estimation algorithms. 

Figure 8: Current measurements used to provide indirect 
voltage measurements. 

 Another feature of the PMU measurements is that it 

is not necessary to have a completely observable network 

before state estimation could be performed.  It is 

frequently possible to just take a few phasor measurements 

from key locations on the network, and use these 

measurements to provide valuable information to control 

centers or network controlling devices.  Also, it is possible 

to divide the power system in observable and unobservable 

islands, and from the observable islands make close 

estimates of the unobserved portions.  This is illustrated in 

Figure 9. 

Figure9: Estimators for incomplete observability. 

PMU

Indirectly

observed

Unobserved 

Anti-aliasing

filters

16-bit

A/D conv 

GPS 

receiver

Phase-locked

oscillator

Analog

Inputs

Phasor

micro-

processor

Modems

Control
Center

Traditional estimation with scanned data

PMU Indirect 

333

Figure 1.1. PMU block diagram. Note: from [3] c©2006 IEEE

Specifically, the voltage v(t) (or the current) instantaneous value in a perfect sinu-

soidal form can be described as :

v(t) = Vm cos(2πft+ φ) (1.1)

f is the frequency (50 or 60 Hz), Vm is the maximum value of v(t), and φ is the

angle. The PMU will provide both V and φ at the rate of 60 Hz. The timely and fast

1
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availability of Vm and φ measurements becomes more important when the system is under

transient condition and both Vm and φ are function of time. The combination of Vm and

φ in one complex number is called the phasor Ṽ of v(t):

Ṽ =
Vm√

2
ejφ j is the complex number (1.2)

Phasor Measurement Units provide the phasor Ṽ of v(t) from which the angle φ

and magnitude Vm can be extracted.

1.1.1 Phasor Measurement Techniques

The theoretical approach to provide phasor data from the instantaneous one is built

around Discrete Fourier Transform (DFT). The voltage or current (referred to as signal in

this section) is sampled at a frequency Nf where N is an integer number (N = 12 has been

used in the literature). The phasor value ṼN of the fundamental frequency is extracted

from the sampled signal using N samples (vn n = 0...N − 1) [2]:

vn = Vm cos(2πn/N + φ) (1.3)

ṼN =

√
2

N

N−1∑
n=0

[vn(cos(2πn/N)− j sin(2πn/N))] (1.4)

The value ṼN is based on N samples. However a recursive formula can be found

for ṼN in the time window.

1.1.2 PMU Applications

The high reporting rate (60 Hz) compared to 0.5-1 Hz in existing measuring systems

creates a whole new application area which had not been possible before. The measure-

ments accompanied by the precise time stamps will allow for a constellation of PMUs

implemented across the transmission network to generate the synchronized measurements

necessary to estimate the state of the transmission network. Prior to the PMUs implemen-

2
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tation, measurements taken every one or 2 second of the voltage magnitude and the active

and reactive power flow were used to estimate the state of the power system [4]. Such

low sampling rate did not allow to develop a dynamic situation awareness of the power

systems. Such estimation was actually done every few minutes, a rate which can be greatly

improved by the use of PMUs. An example of possible use of PMU is the FNET estimation

of angle gradient map in the eastern part of the United States updated every 4 seconds

(Fig. 1.2 available at http://fnetpublic.utk.edu/anglecontour.html).

Figure 1.2. FNET angle contour map. Note: c©2012 Power Information Technology Lab,
University of Tennessee

Several application areas can be built around PMUs in order to study the grid in

a dynamic way. Such application areas include [5, 2, 6]:

1. Dynamic state estimation

2. Wide Area Monitoring systems (WAMS)

3. Power systems protection

4. Power systems control

3
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5. Monitor system oscillations

6. Monitor the stress on the electric transmission system

7. Available transmission capacity

8. Identifying the corrective actions (such as damping) needed in case of discrep-

ancies

9. Various stability studies including angular stability and voltage stability.

PMUs have already proven to be useful in WAMS applications.In China for exam-

ple, the use of PMUs has shown an angle difference of a transmission line to be 6 degrees

whereas simulation studies indicated a difference of 20 degrees. In Mexico WAMS studies

using the PMUs were able to study a very critical oscillation problems which happened

when two power systems were connected for the first time and ensuing oscillations were

going to lead to a complete collapse of the whole power systems [5].

1.2 Parameter Estimation and Power Systems

1.2.1 The Need for Parameter Estimation in Power Systems

Outages like the one of Aug. 10th, 1996 and the one of Aug. 14th, 2003 have

propelled the need for parameter estimation of synchronous generators and for situational

awareness of the transmission system.

Following the 1996 blackout investigation, Western Systems Coordinating Council

(WSCC) developed guidelines on synchronous machine model validation as a response

to North American Electric Reliability Corporation (NERC) report on the outage [7].

Amongst the findings of the report, it was brought forward that machines parameters and

states estimation play an important role in power system stability studies [8, 7]. Factors

such as aging and repairs modify with time the generators parameters values from those

provided by the manufacturers which could lead to serious deviation between machine

simulated response and the actual response response to an event (Fig. 1.3). The WSCC

4
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model validation guidelines call for periodic verification of the synchronous machine key

parameters. These parameters include machines reactances, time constants, inertia, and

stator resistance, among other parameters.

The United States Department of Energy report on the 2003 blackout advised

on several factors contributing to this blackout including: i) lack of ability to identify

emergency conditions, and ii) inappropriate awareness of the power system situation on

the regional level [9].

Moreover, unit-specific dynamic data should be filed in order to comply with NERC

MOD-013 [10] standard. This standard covers power generating systems inclusive of gen-

erators (inertia constant, damping coefficient, direct and quadrature axes reactances and

time constants), excitation systems, voltage regulators, turbine-governor systems, power

system stabilizers. Currently, the generating unit is brought offline and is subject to tests

in order to provide the data required by NERC. The research problem investigated in this

dissertation have a practical application by providing some of the data required by NERC

MOD-013 while the generating unit is connected online and without interrupting its power

supply to the electric grid.

August 10, 1996 WSCC Outage

4000

4200

4400

4600

0 10 20 30 40 50 60 70 80 90

4000

4200

4400

4600

Time in Seconds

 Simulated COI Power (initial WSCC base case)

 Observed COI Power (Dittmer Control Center)

Real event

Dynamic
simulations

No confidence in dynamic database
Figure 1.3. Deviation between real events and simulated ones. Note: c©NERC
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1.2.2 Parameter Estimation in Power Systems

Parameter estimation comes from our endeavor to give physical systems mathe-

matical representation. Often, such mathematical representation is under the form [11]:

f(m) = d (1.5)

In engineering, the mathematical representation usually looks like:


ẋ = f(x, u,m)

y = g(x, u,m)

(1.6)

f is a linear or a non-linear function, m is a constant vector (referred to as parameter

set), x is a time varying vector representing the internal states of the system, u is an external

time varying vector representing the control (or input) to the system, y is a time varying

vector representing the measurements, and g is the observation function of the system.

The problem of finding x given f and m is referred to as the forward problem which can be

solved by Kalman filter, the problem of finding f (inclusive of m) given g, u and y is called

system identification.The problem of finding m given y, g, u and f is an inverse problem

(as opposed to the forward problem) or simply a parameter estimation problem [11, 12].

Power systems are dynamic systems spanning over various time periods. These

dynamic phenomena have been classified according to their time scale under instantaneous

response, short-term dynamics, and long-term dynamics [13]. Power system network re-

sponse is assumed to be instantaneous. The network dynamics are of electromagnetic

nature and considered to be very fast compared to the other power system phenomena and

are usually modeled in algebraic forms. Long-term dynamics of several minutes are asso-

ciated with some protective devices and controllers which by design do not interact with

short-term dynamics. Short-term dynamics of few seconds are mainly due to the heart of

power systems, the synchronous machines and their voltage and power controls, and they

are referred to as electromechanical dynamics. Fig. 1.4 by [14] shows the synchronous ma-

6
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chine related dynamics (inertial, prime mover, and excitation) compared with other power

system dynamics. Among the short term oscillations, [15] points out that the local mode

oscillations have a frequency of 0.7 - 2 Hz whereas the more important inter-area modes

have oscillations in the order of 0.1 - 0.8 Hz. It is this kind of oscillations (0.1 - 2 Hz) that

this dissertation is researching. PMUs with a reporting rate of 60 Hz are a good choice to

capture the short-term dynamics with frequency of 10 Hz or less as evidenced [2].

Page 17 
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Figure 1.4. Time scale of power systems dynamics. Note: c©2002 - 2012 George Gross,
University of Illinois at Urbana-Champaign

The choice of which model to use in studying synchronous machine depends on the

objective of the study [16]. A synchronous machine two-axis model with no governor nor

exciter controls and ignoring the sub-transient dynamics [17] is described by (The symbols

are explained in Appendix A):

∂δ′
∂t = ω − ω0 (1.7)

2H
ω0

∂ω
∂t = Pm − Pe (1.8)

T ′do
∂E′

q

∂t = −E′q − (xd − x′d)Id + Efd (1.9)

7
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T ′qo
∂E′

d
∂t = −E′d − (xq − x′q)Id (1.10)

[E′d + (x′d − x′q)Iq + E′q] = jx′d(Id + jIq) + V ej(θ−δ
′+π/2) (1.11)

A classical model for the synchronous machine can be derived from (1.11) by remov-

ing the dynamics of electromagnetic nature and keeping the electromechanical dynamics.

Specifically, T ′qo is set to zero and T ′do to infinity. Classical model is a good choice to study

inter-area stability because a power subsystem made of multiple coherent machines can be

represented by one classical model machine [18]. Accordingly, PMU based methodologies

can be developed to estimate individual machines parameters and such methodologies can

be scaled to estimate power subsystems equivalent machines parameters.

The extraction of the machine parameters can be accomplished either through of-

fline testing or during online operations following a disturbance. Offline testing has the

disadvantage of disconnecting the machine from the transmission system, while online esti-

mation works while the machine is connected to the power system during normal operation.

1.3 Statement of the Problem

The purpose of this dissertation is to research the estimation of power systems

models with PMU data, specifically:

1. To explore the use of PMU data in System Identification

2. To investigate the use and effectiveness of various parameter estimation meth-

ods for the purpose of online system identification including models, states, and

parameters. The parameters estimation methods include methods specific to

power systems or general methods applicable to various engineering systems

3. To establish models of power systems electromechanical dynamics which can be

reflected by PMUs data and are suitable for parameters estimation

4. To develop various parameters estimation applications on various synchronous

generators models such as classical model system identification or flux decay

8
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model parameter estimation. Such applications can be extended in the future

to other power systems such as wind farms.

5. To propose methods to select the parameters involved in power systems elec-

tromechanical dynamics which can be estimated based on PMUs data.

1.4 Organization of the Dissertation

The dissertation is organized as follows:

1. Chapter 1 introduces the importance of model and parameter estimation in

power systems.

2. Established research in power system parameters estimation based on Kalman

Filter and Least Squares Estimation is exhibited in Chapter 2. The chapter

highlights the limitations and assumptions of such research and points out to

specific objectives to be attained by this dissertation providing an incremental

contribution to the established research in the literature.

3. Kalman Filter based research is shown in Chapter 3. Section 3.3 carries out

parameters estimation for non-linear systems of the synchronous machine classic

model based on the linearization approach of Extended Kalman Filter. Section

3.4 shows the sampling approach of Unscented Kalman filter for solving the

non-linearity related anomalies found in the synchronous machine flux decay

model.

4. Chapter 4 presents two Least Squares Estimation based applications on syn-

chronous machine and on power subsystem estimation. Finite differences tech-

nique is used in conjunction with Least Squares Estimation to estimate the

parameters of synchronous machine classic model in Section 4.3 where the im-

pact of various operating conditions and machine controls were studied. Section

4.4 develops a linearized model for the synchronous machine, studies the selec-

9
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tion criteria for the parameters to be estimated and proceeds with a parameters

sub-set estimation using System Identification.

5. Chapter 5 concludes the dissertation with the main results drawn from the

research and proposes future work by extending the research of parameter es-

timation to other types of power systems.
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CHAPTER 2: REVIEW OF RELEVANT LITERATURE AND RESEARCH

Generators parameters estimation has been an active research topic and has been

clearly mandated by NERC. In order to classify the estimation methods, several criteria

are used based on: the nature of the data (Section 2.1 and Section 2.2), data processing

(Section 2.3 and Section 2.4), the measurements domain, machine offline testing or online

connection, and the scope of the parameters (Section 2.5).

2.1 Parameter Estimation Measurement Equipment: DFRs and PMUs

Digital Fault Recorders (DFRs) are fast measurement devices designed to record

the three phase instantaneous response of an electric system to faults. Due to the fast

response of electric systems to faults, DFRs have high sampling rate which can reach 10

KHz [19].

Phasor Measurements Units (PMUs) are introduced in Section 1.1. Compared to

DFRs, PMUs are part of Wide Area Monitoring Systems (WAMS) which prompts the

establishment of PMUs data network covering interconnection areas such as FNET (see

Fig. 1.2), and the establishment of North American SynchroPhasor Initiative (NASPI)

aiming at improving the electric grid reliability. On the technical side, DFRs provide three

phase instantaneous values versus the positive sequence phasor values with PMUs, and

DFRs have a higher sampling rate.

Generators parameters include parameters of electric nature usually associated with

fast electromagnetic and electric states (e.g. impedances associated with magnetic fluxes)

and parameters of mechanical nature associated with slow mechanical states (e.g. inertia

associated with rotor speed). Accordingly, electric parameters and states estimation ne-

cessitates the use of fast measurement equipment, e.g. the Digital Fault Recorder (DFR),

11
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whereas equipment with lower measuring rates, e.g. PMUs, can be used in the estimation

of the electro-mechanical parameters and states. Data from a PMU installed at the output

of power generation area, as part of WAMS, can also be used to estimate the parameters

of the equivalent of machine of the generation area.

DFR instantaneous data were used to estimate machine electrical parameters pre-

dominantly found in fast electromagnetic dynamics which have small time constants [17].

Such estimation for (Lad, Laq, and rf ) was carried out by Kyriakides et al [20], for the

armature circuit parameters by Melgoza et al [21], and for xmd, xmq, and rf by Valverde et

al [22]. In [20] and [21] the field circuit voltage and current need to be available in addition

to the output voltage.

PMU data were used by Chow et al [23] to study of a radial transfer path and by

Huang et al [24] to estimate the states in a multi machine system. It was also used by

Wehbe and Fan for the estimation of synchronous machine classical model connected with

a shunted transfer path[25].

Other methodologies based on measurements from inside the machine could also

be used to assess the machine states. Humer [26] used contact-less sensors on the shaft of

the rotor to find the rotor mechanical angle, rotational speed, and rotational acceleration.

These dynamic parameters are used to find the torsion oscillations of the shaft through sec-

ond order system. Operators need to know how much torsion oscillations the synchronous

machines are subject to because such oscillations increase the fatigue of the machines and

decrease their lifespan. This method does not seek to find electrical parameters like ma-

chine internal reactances or resistances, although the mechanical states of the machines

are tightly associated with the electrical ones like frequency and rotor angle. Such method

requires that the synchronous machine be equipped with sensors on its shaft increasing the

cost of the machine.

As a summary, DFRs are used for the estimation of parameters built in the fast

electromagnetic dynamics. The focus of this dissertation is on using PMU data for elec-

tromechanical dynamics related estimation.

12
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2.2 State of the Art Approaches on PMU Data Based Estimation

Chow et al. [23] method uses two PMUs on the extremity of radial transmission line,

which makes the method dependent on the network topology. Wehbe and Fan estimation of

the classical machines parameters connected by a shunted transmission line in 2.2 depends

also on the transfer.

Huang et al. [27] apply a Kalman filter based method to estimate generator pa-

rameters (inertia H, transient reactance x′d, and damping D) using PMU data. However,

the method was not tested for robustness since the simulated machine and the estimated

machine have the same simplified complexity and the same simplified dynamics.

Ghahremani and Kamwa [28, 29] use EKF and UKF to estimate the dynamic states

only of a synchronous machine where the parameters of the machines are assumed available.

Huang et al [27, 24] used Extended Kalman Filter (EKF) and PMU data to estimate the

states and parameters of a classical generator model (rotor angle, rotor speed, H, D and

x′d). The input mechanical power and the internal voltage of the machine are assumed

to be known. The algorithm was tested against a simulation model exactly same as the

estimation model.

As a summary, the PMU data used for estimation of synchronous machines has been

supplemented either by simplifying assumptions or extra measurements. This dissertation

will improve on the dynamic estimation using PMU data. Approaches which can be applied

to any system topology will be developed. Robustness of the approaches will be tested

against unmodeled dynamics. Both states and parameters will be estimated.

2.3 Least Squares Estimation and System Identification

The processing of the Differential and Algebraic Equations (DAEs) representing the

machine model by the estimation methods, along with the data provided by the DAEs, can

either be batch processing like the approach of Least Squares Estimation (LSE) methods

13
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or recursive processing as used by Kalman Filter (KF). LSE was used by the frequency

domain data based methods in [30, 31] and by time domain data based methods.

In the time domain data based methods, LSE coupled with DFR were used to

estimate machine d and q axis inductances and field resistance, (Lad, Laq, and rf ) by

Kyriakides et al. [20], the armature circuit parameters by Melgoza et al. [21]. Both [20]

and [21] use data provided by DFRs (high sampling frequency) in addition to field circuit

voltage which is not an output data and is not available usually when the machine is

operating under normal circumstances.

The differential equations describing the machine under transient conditions can be

tackled during LSE problem by numeric techniques like finite differences. Finite differences

technique has been used in power systems research such as in [32] and [20] in order to com-

pute derivatives wrt. time. The research in this dissertation will explore the possibilities o

using finite differences in estimating power systems parameters.

Least squares estimation is a part of System Identification framework. System iden-

tification is another non-Bayesian approach used to find systems structures and estimate

their parameters [12]. The objective of system identification is to use experimental or mea-

sured data as input and output of proposed model structure describing a physical system

in order to estimate the proposed model parameters and order. System identification has

been used in power electronics research in order to identify power converters [33, 34], to

model large signal power electronics systems [35], and to estimate DC link model param-

eters in VSC-HVDC system [36]. It has also been used in power systems research in the

design of probing signals for the estimation of inter-area electromechanical modes [37], and

in finding the state space system for multi-input-multi-output models of power systems

[38]. [38] uses system identification in order to identify the dominant modes of the systems

based on their responses to pulse excitations.

System output sensitivity matrix based on singular value analysis is used to study

which parameters can be estimated using Least Squares Estimation [39] with specific set

of measurements (observations). [40] has used the similar approach of studying the Hes-
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sian matrix for the synchronous machines parameters sub-set selection using synchronous

machine voltage, current, rotor angle, and field voltage. Such set of data used by [40] is

not usually available for synchronous machines in online operation as opposite to the con-

tinuous availability of PMU data. The dissertation will address the use of the sensitivity

matrix of the PMU data for the purpose of parameters sub-set selection for estimation.

It is one of the objectives of the paper to extend system identification to estimate

synchronous machines and power systems parameters based on the output data provided

by PMUs only.

2.4 Kalman Filter Based Estimation

2.4.1 Kalman Filter

Kalman filter (KF) is a digital optimal linear data processor used to estimate the

states of a system subject to process noise and to measurement noise [41]. KF approach

is a Bayesian recursive method compared to the LSE which uses a non Bayesian methods

considering the complete data set in the time window.

The states can be constant (parameters) or dynamic (time varying) states when

using Kalman Filter and are modeled as random variables with mean x̂ and a covariance

P . What the filter needs to know is:

1. System and measurements descriptive equations

2. Process and measurements noise variances Q and R

3. Initial values of states with their initial covariances x0 and P0

Kalman filtering process in the discrete model at a time step starts with a prediction

of the states and their probability moments (variance and mean) in the next time step using

the recursive system, followed by a correction of the predicted moments using measured

observations. It can be summarized as follows:
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1. Find the system and measurements descriptive equations:


xk = Axk−1 +Buk + wk

zk = Cxk +Duk + vk

(2.1)

where xk: state value at time k, uk: control function, wk: process noise, zk:

measurement, and vk: measurement noise.

2. Predict the value of xk and Pk:
x̂−k = Axk−1 +Buk

P−k = APk−1A
T +Q AT is the transpose of A

(2.2)

3. Find Kalman Gain Gk = P−k C
T (CP−k C

T +R)−1

4. Find the measurement deviation ∆zk = zk − (Cx̂−k +Dûk)

5. Correct the estimates for xk and Pk:
x̂k = x̂−k +Gk∆zk

Pk = (I −GkC)P−k I is the identity matrix

(2.3)

6. repeat steps 2.through 5. above until the estimation is stable.

Fig. 2.1 shows the workflow of Kalman Filter.

The state space system (2.1) is linear. When the state space system is non-linear

then KF can still be used after getting modified to become either Extended Kalman Fil-

ter (EKF) or Unscented Kalman Filter (UKF). EKF linearizes the states and observa-

tions equations in order to deal with non-linearity issues [42] whereas UKF calculates the

probability moments, of both a number of projected states samples and their projected

observations, in order to address the non-linearity anomalies [43].
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Figure 2.1. Kalman Filter workflow

KF is suitable for parameter estimation of synchronous machines, because syn-

chronous machines can be formulated according to (2.1) where the state x can be either a

variable (like rotor angle) or simply a parameter (like the machine inertia H).

2.4.2 Existing Research Using EKF and UKF in Machines Parameters Esti-

mation

EKF and UKF have been used instead of the simple Kalman filter when the system

model equations are non-linear. An example of the such non-linearity is the power flow

equation between the synchronous machine and a bus at the output of the machine [44]:

P = EV sin(δ−θ)
x′d

where: P is active power, E and δ are the internal voltage source and

the angle of the machine, V and θ are the voltage and angle of the bus; δ is a state

variable in this case. Both filters (UKF and EKF) have been used to estimate parameters

of synchronous and induction machines.
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Azad et al [45] estimated stator and rotor resistances and inductances (in addition

to other electromagnetic states) of doubly fed induction generator (DFIG) used in wind

turbine using rotor and stator d and q axis voltages and currents with UKF or EKF. UKF

is used by Valverde et al [22] to estimate the d and q magnetizing reactances xmd, xmq,

and the field resistance rf (with various electromagnetic states). Additional mechanical

measurements not provided by PMUs or DFRs, i.e. rotor speed ω and rotor angle δ, are

required in [22] and [45]. [22] highlights the difficulties in obtaining xmq and δ simultane-

ously because of a relation between them, hence [22] uses either a sensor to measure δ or

a fixed ration between xmq and xmd. The simultaneous estimation of δ and xq is similarly

challenging because of the relation between xq and xmq, xq = xls + xmq, xls being the

leakage reactance [17].

Kalsi [46] uses EKF to calibrate the inertia H and damping factor D for a classical

synchronous machine. The algorithm needs terminal measurements (like PMU) and to

explicitly know the system equations which can only be done if other machine parameters

(like the transient reactance) are known. Huang et al [24] used Extended Kalman Filter

(EKF) and PMU data to estimate the states in a multi machine system. [27] calibrates the

parameters of a classical machine based on recorded terminal data. The simulated model

used in [46] and [24] is a simple model and can differ substantially from the real machine

which raises the challenge of using a sophisticated model in the simulation. Ghahremani

et al [28] [29] uses EKF and UKF to estimate the dynamic d and q voltage transients for

a synchronous machine where the parameters of the machines are available.

As a summary, in this dissertation KF application using PMU data will be im-

proved. More parameters and states will be estimated and unmodeled dynamics will be

tested.

2.5 Further Classification and Summary

Following the domain of the data, the methods can either be time domain data

based methods [40, 47, 48, 49, 50, 51, 52, 53, 54, 21, 55, 56, 57] or frequency domain data
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based methods [30, 31, 58, 59]. Since the machine subject to estimation connects to the

electric grid, the methods can either require the machine to be offline as in the case of the

frequency domain based methods [30, 31, 58, 59] or to be online as found by time domain

based methods. NERC’s suggested method [7] uses the response for step change injected

into the voltage reference and calls for an offline testing of the machine. Interest in keeping

the machine connected to the network has led to the development of online estimation

methods for the synchronous machine.

The scope of the parameters to be estimated is another area addressed by estimation

methods: some methods estimate electrical parameters only (e.g., d or q axis resistances

and inductances) as in [47, 49, 53, 54, 30, 31, 58, 59, 21, 55, 56, 57] whereas other methods

look at a combination of electrical and mechanical parameters [48, 50, 51, 52].

Burth et al. [40] points out to the difficulty in estimating synchronous machine

parameters based on its output only. The reason is the complicated structure of the

synchronous machine which incorporates lots of parameters yet the effect of each parameter

is not clearly reflected in the output (recorded by PMU or DFR), i.e. the generator output

observations are not rich. In order to circumvent such estimation difficulties, researchers

have resorted to using various additional information in addition to the machine output

data towards carrying out machine parameters estimation.

Fig. 2.2 shows the various estimation approaches for power systems parameters

estimation.

2.6 Dissertation Contribution

This dissertation will identify PMU based generator model estimation problems

and apply approaches such as least square estimation and Kalman filtering in estimation.

Specifically, the contributions of the dissertation include:

1. Building the estimation process around data from one PMU only
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Figure 2.2. Various approaches in power systems parameters estimation

2. Extending System Identification Framework on synchronous machines and power

subsystem in terms of developing a model, estimating its parameters, and vali-

dating its output against a sophisticated simulated system

3. Implement sensitivity matrix analysis using singular value decomposition on

PMU data in order to select the parameters sub-set suitable for estimation by

the PMU data

4. Exploring finite differences technique in conjunction with Least Squares Esti-

mation as a parameter estimation method for the dynamic system representing

a synchronous machines and using PMU data as measurements

5. Identify the issues facing the application estimation techniques on real PMU

data

6. Developing subsystem decoupling technique as the interface between a power

subsystem and the rest of the power system

7. Improving on the use of Extended Kalman Filter by increasing the accuracy

and conversion of the estimations
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8. Improving on the application of Unscented Kalman Filter by using dual filters

on synchronous machine flux decay model and estimated q axis reactance with

the rotor angle at the same time. Against other established research, the esti-

mation of the rotor angle with the q axis reactance does not use any data other

than the PMU data

9. Address the deviation resulting from machine high order models simulation

subject to lower order model estimation
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CHAPTER 3: KALMAN FILTER BASED ESTIMATION

3.1 Note to Reader

Portions of these results have been previously published (as a 1st author in [60]) or

submitted for publication (as a 2nd author in[61]). The results are utilized with permission

of the publisher.

3.2 Introduction

Kalman Filter was introduced in Section 2.4 as an estimation filter for linear sys-

tems. Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) are the major

improvements on KF in order to deal with non-linearity related discrepancies.

3.3 Extended Kalman Filter Based Estimation

3.3.1 Introduction

Phasor Measurement Units (PMU) equipped with GPS antennas measure three-

phase instantaneous voltages and currents and calibrates phasors. These phasors are trans-

mitted with time stamps and called synchrophasors. Synchrophasors have many applica-

tions that enhance situation awareness of the power grid. The Department of Energy has

supported PMU installation around the US through the Smart Grid Investment Grant

(SGIG) with a plan for thousands of PMUs to be installed in the US over the next several

years. Effective use of the PMU data to enhance power system situation awareness and

security is of key interest to power system operators.

State estimation can be generally classified into two categories: steady state and

dynamic. Conventional state estimation belongs to the first category, where bus voltages
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and phase angles are estimated every five minutes and the estimation handles steady state

power flow problems. The measurements could be active power, reactive power and voltage

magnitude. With phasor measurements, steady state estimation can incorporate direct

phasor measurements and formulate least square estimation problems [62, 63, 64].

This research deals with dynamic state and parameter estimation employing PMU

data. The current data in Eastern Interconnection collected by the RTDMS database

[65] has a 30 Hz sampling rate. This is a much faster sampling rate compared to that of

conventional state estimation (0.2 Hz sampling rate). With such a sampling rate, estima-

tion of dynamic states and parameters related to critical low frequency electromechanical

dynamics becomes feasible. Two applications can be envisioned for PMU data based dy-

namic estimation. The first one is in generator model and parameter estimation. NERC

MOD-013 [10] compliance requires unit-specific dynamics data shall be reported. These

data include generator (inertia constant, damping coefficient, direct and quadrature axes

reactances and time constants), excitation systems, voltage regulators, turbine-governor

systems, power system stabilizers, and other associated generation equipment. Currently,

the data required by NERC have to be obtained by bringing a unit offline and conducting

tests. The problem investigated in this research can provide some of the data required by

NERC MOD-013 and therefore have a practical application in online generator parame-

ter estimation without interrupting units operation. The second application is subsystem

identification. Instead of just one generator unit, a subsystem consisting of multi units can

be estimated with PMU data.

Synchronous generator parameter estimation has been investigated in the literature.

Based on the data used, the methods can be classified into: time-domain data based

[40, 47, 48, 49, 50, 51, 52, 53, 54, 21, 55, 56, 57] and frequency response data based

[30, 31, 58, 59] methods. Based on the nature of the measurements, there are digital fault

recorder data with high sampling rate based estimation for generator electrical parameters

[21, 55, 56, 57], and other online tests based methods such as short circuit tests [47, 49], step

or binary sequence inputs into excitation [48, 51, 52], and offline tests based [30, 31, 58, 59]
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methods. Based on the scope of the estimation, some focus on electrical parameters (e.g.,

qd-axis resistances and inductances) only [47, 49, 53, 54, 30, 31, 58, 59, 21, 55, 56, 57],

while [48, 50, 51, 52] estimate both electrical and mechanical parameters. Based on the

estimation methods, then there are at least two major systematic methods to deal with

differential equation model estimation: least square estimation [40, 47, 48, 49, 52, 54, 30, 31]

and Kalman filter estimation [50, 51].

PMU data based estimation problems fall into the category of online, time-domain,

and electro-mechanical dynamics related problems.

In the literature, a synchronous generators’ parameters can be estimated accurately

if given sufficient measurements. For example, in [48], a third-order machine model param-

eters (H, D, T ′do) are estimated based on the measurements of the terminal voltage, output

power, angle given a step response in excitation system. In [51], electrical and mechanical

parameters of a generator can be estimated given measurements from filed current, termi-

nal current, terminal powers, rotor angle and rotor speed. In [52], electrical and mechanical

parameters of a generator can be estimated given measurements of three-phase currents,

line voltages, and field voltage. Reference [40] indicates that machine circuit parameters

and mechanical system parameters can be estimated given different sets of measurements.

Unlike the estimation problems in the literature, PMU data are limited to voltage

and current phasors. We cannot obtain measurements as much as we want such as in

[51, 52]. Secondly, unlike the tests conducted in [48, 50, 52], the trigger of transients is

unknown. Field current and voltage measurements are not available.

Therefore, PMU data based estimation problems are limited to state estimation

only [66, 67] or state/parameter estimation for 2nd order mechanical system [24, 27, 46,

68, 69]. The above investigation all applies Kalman filtering technology in estimation.

There are other methods in PMU data based estimation method designated for a special

system, e.g., [23] investigates a radial system estimation problem. In this research, a general

approach that can be applied for any system is sought.
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EKF approach is adopted in this research to estimate a generator’s model and

parameters. Unlike least squared estimation which uses a time window of data, EKF

estimation uses the current step measurements and prediction. Hence the data storage

requirement is very low. This approach can also be used to estimate a reduced-order

model which can represent a subsystem. In addition, to reduce the computation burden,

instead of estimating the entire system, only a subsystem or a generator is estimated. The

generator is however interconnected to the grid. Therefore, a model-decoupling method will

be introduced in this research to decouple the subsystem model from the grid by treating

a subset of measurements as inputs to the model.

Model decoupling technique has been employed in decentralized nonlinear control

and subsystem model validation [70, 71, 68, 27]. A subsystem’s model will be independent

from the rest of the system as long as the interfacing variables with the rest of the system

can be measured and used as the input for a local decentralized controller. In [70], terminal

voltage is the interfacing variable. In [71], currents are the interfacing variables. In model

validation, a technique used in subsystem model validation is called “event play back”

[68, 27]. In “event play back,” the objective is to estimate the parameters for a dynamic

model which represents a synchronous generator or a subsystem. Measurements at the

terminal bus will be separated into two groups. One group (voltage magnitude and phase

angle) is treated as the input signals to the dynamic model and the other group (real

and reactive power) is treated as the measurements in the EKF algorithm. Using such a

technique, there is no longer the need to deal with the dynamic model of an entire power

system; rather, second-order dynamic models will be used in the EKF in parallel.

This research will propose a model decoupling method and implement EKF to

estimate dynamic states and parameters related to electromechanical dynamics. Compared

to the most recent work on EKF implementation in PMU data for dynamic state estimation

in [27, 66], the unique contribution of this research is two-fold:

1. The estimation can handle more parameters. The problem presented in this

research is more comprehensive where two states and four unknown parameters
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will be estimated. Estimated problem in [66] deals with four dynamic states (δ,

ω, E′q and E′d) and one unknown parameter (excitation voltage Efd). All other

parameters such as inertia constant H, damping factor D and reactances are

assumed to be known. Estimation of H and D have shown to be more difficult

than other parameters [27] since nonlinearity is introduced and there will be

more linearize error in EKF prediction. EKF-based estimation in [27] assumes

the mechanical power for a generator is known and three parameters H, D and

x′d are estimated. This research will tackle four-parameter and five-parameter

estimation problems.

2. The estimation can handle modeling errors. The model used in this research

is the simplest for a synchronous generator. However the estimation will be

tested against simulation data from more sophisticated model to demonstrate

the robustness of the proposed estimation. This is a step further than research in

[66, 67, 24, 27, 46, 68, 69] where estimation model is the same as the simulation

model with white noise added in measurements. In this research, the estimation

is tested against unmodeled dynamics which are no longer white noises.

The following sections will explain the basic EKF algorithm (Section 3.3.2), model

decoupling and EKF implementation (Section 3.3.3). Case studies will be present in Section

3.3.4. Section 3.3.5 concludes this EKF based research.

3.3.2 Basic Algorithm of EKF

Kalman filter theory was developed by R. Rudolf Kalman in late 1950s and can

be considered as a type of observers for linear dynamic systems perturbed by white noise

by use of white noise polluted measurements [72]. Kalman filter is suitable for real time

estimation since the estimation is done for any instantaneous time. EKF is a discrete

Kalman filter adapting to nonlinear system estimation through linearization.
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For a nonlinear dynamic system described by Differential Algebraic Equations

(DAEs) in (3.1) and further in discrete form in (3.2), the purpose of EKF is to minimize

the covariance of the mismatch between the estimated states and the states.


dx
dt = fc(x,y,u,w)

0 = gc(x,y,u,v)

(3.1)

where the x vector represents the state variables, the y vector represents the algebraic

variables, u is the vector of input variables, w and v are processing noise and measurement

noise. The subscript “c” denotes the continuous form. The discrete form of (3.1) is:


xk = xk−1 + fc(xk−1,uk−1,wk−1)∆t ≡ f(xk−1,uk−1,wk−1)

0 = gc(xk,yk,uk,vk)⇒ yk = h(xk,uk,vk)

(3.2)

The EKF problem can accommodate parameter estimation by adding “auxiliary

states” where xk = xk−1 . The EKF problem can be solved in a two-step process [73]:

Prediction :


x̂−k = f(x̂k−1,uk, 0)

P−k = Ak−1Pk−1A
T
k−1 +Wk−1Qk−1W

T
k−1

(3.3)

Correction :


Kk = P−k H

T
z,k(Hz,kP

−
k H

T
z,k + VkRkV

T
k )−1

x̂k = x̂−k +Kk(zk − h(x̂−k ,uk, 0))

Pk = (I −KkHz,k)P
−
k

(3.4)

where the superscript − denotes a priori state, Ak and Wk are the process Jacobians at

step k, Pk is a co-variance matrix of the state estimation error and is also called gain factor

matrix, and Qk is the process noise covariance at step k. Hz,k and Vk are the measurement

Jacobians at step k, and Rk is the measurement noise covariance at step k.
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A, Hz, W , and V are formulated as follows:

A =
∂f

∂x
, Hz =

∂h

∂x
,W =

∂f

∂w
, V =

∂h

∂v
. (3.5)

3.3.3 Model Decoupling and EKF Implementation

3.3.3.1 Model Decoupling

The technique used in subsystem model validation called “event play back” [68, 27]

has the potential to decouple the EKF problem by better use of PMU data. One group is

treated as the input signals to the dynamic model and the other group is treated as the

measurements in the EKF problem. Using such a technique, there is no longer the need

to deal with the dynamic model of an entire power system. Rather, small-scale dynamic

models will be used in the EKF in parallel.

Each PMU provides voltage phasor and current phasor. From the provided data,

active power P and reactive power Q can be computed. In this application, we consider

PMU provides four data sets: voltage magnitude (V) , voltage phase angle (θ), active

power (Pe) and reactive power (Qe). Only positive sequence data from PMUs are used in

this application since it is reasonable to assume that transmission systems are operated

under balanced conditions for majority of the time. The dynamic model of each generator

(modeled as a constant voltage behind a transient reactance) is expressed as follows:



dδ
dt = ω − ω0

dω
dt = ω0

2H (Pm − Pe −D(ω − ω0)

= ω0
2H (Pm − EV

x′d
sin(δ − θ)−D(ω − ω0))

(3.6)

The vector of the state variables is x = [δ, ω]T (δ-rotor angle and ω-rotor speed). E

and Pm are internal voltage and mechanical power. The coupling between a generator and

network can be viewed at two levels: at electric level and at electro-mechanical level. At
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electrical level, the generator is modeled as a voltage source behind impedance. A network

voltage and current relationship can be setup Y V = I.

At the electro-mechanical level, the machine speed is influenced by the electric

network through the electric power exported. The mechanical power is assumed to be

constant or the slow dynamics of the mechanical system is ignored. Fast dynamics in the

damping windings are ignored. Further, field flux is assumed to be constant.

There are two ways to decouple the model using PMU measurements as shown in

Fig. 3.1. Method A treats the terminal voltage phasor (V , θ) as the input and the power

(Pe, Qe) as the measurements. Method B treats the power as the input and the voltage

phasor as the measurements. When Pe and Qe are treated as the input for the model in

(3.6), (3.6) can then be considered as a stand-alone dynamic model. On the other hand, if

Pe and Qe are not treated as the input, each generator will be dominated by its dynamic

equation as (3.6). These equations are coupled by the expression of electric power.

E  δ V  θ  

jx’d

Pe and Qe as 
measurements

E  δ 

jx’d

V and θ as 
measurements

Pe and Qe as 
inputs

(a) (b)

E  δ 

jx’d
jx’d1

E1 δ1

jx’d2

E2 δ2

Figure 3.1. (a) model decoupling using V and θ as inputs while Pe and Qe as measurements.
(b) model decoupling using Pe and Qe as inputs while V and θ as measurements

The relationship of PeQe, V θ and other state can be found in the equations:


Pe = EV

X′
d

sin(δ − θ)

Qe = −V 2+EV cos(δ−θ)
X′d

(3.7)

Method A has been applied by the PNNL group in [68, 69]. Method B, however, has

not been investigated. A significant difference between Method A and Method B resides
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in the prediction step rotor speed computation:


ωk+1 = ω0

2Hk

(
Pm,k − EVksin(δk−θk)

x′d,k
−Dk(

ωk
ω0
− 1)

)
∆t+ ωk, Method A

ωk+1 = ωk + ω0
2Hk

(
Pm,k − Pe,k +Dk(

ωk
ω0
− 1)

)
∆t, Method B

(3.8)

Method A relies on the voltage measurement, phase angle measurement, and tran-

sient reactance estimation to compute the electric power in the prediction step. The ex-

pression for power is only accurate for a classical generator model. In addition, when the

transient reactance is unknown, there will be significant errors in computing power. Com-

pared to Method A, Method B uses the power measurements as the input for the model.

The accuracy of the rotor speed prediction is greatly improved. Method A has been applied

in [68, 27] and there are two limitations: 1) it cannot handle modeling error. In [68, 27],

the simulation model and the estimation model are the same classical model. 2) it cannot

handle four unknown parameters. It can only handle three parameters.

Therefore, in this paper, Method B is used as the model decoupling technique for

EKF implementation. The EKF implementation is shown in Fig. 3.2 where PMU data

are separated into two groups (PeQe as inputs and V θ as measurements). The dynamics

block performs prediction using system equations while the geometry block computes the

estimated measurements based on the priori states. A Kalman filter gain is used to correct

the priori state with the error between the measurements and their estimation.

3.3.3.2 EKF Implementation

In this section, detailed mathematical model of the EKF will be given. The states

and parameters to be estimated are the rotor angle (δ), the rotor speed (ω), the mechanical

power (Pm), the inertia constant H, the damping factor D and the transient reactance x′d.

PMU can give measurements for the terminal voltage magnitude, voltage phase angle, real

power and reactive power. The real and reactive power are treated as the input. The

voltage magnitude and voltage phase angle are treated as the outputs or measurements.
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Figure 3.2. Kalman filtering technology using PMU data

The discrete model for the estimation system is describe as follow:



δk+1 = δk + (ωk − ω0)∆t+ w1

ωk+1 = ωk + ω0
2Hk

(Pm,k − Pe,k)∆t+Dk(ωk − ω0)∆t+ w2

Pm,k+1 = Pm,k + w3

Hk+1 = Hk + w4

Dk+1 = Dk + w5

x′d,k+1 = x′d,k + w6

(3.9)

Pe,k is the input of the system, wi are the noise to represent un-modeled dynamics

and ω0 is the nominal frequency.
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The Jacobian matrix A is given by

A =



1 ∆t 0 0 0 0

0 1− Dω0∆t
2H

ω0∆t
2H A24 A25 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(3.10)

where:

A24 = −Pm − Pe −D(ω − ω0)

2H2
ω0∆t (3.11)

A25 =
−(ω − ω0)

2H
ω0∆t (3.12)

The measurement sensitivity matrix Hz can be found from the implicit functions

(3.7).

Hz =

 ∂V
∂δ

∂V
∂ω

∂V
∂Pm

∂V
∂H

∂V
∂D

∂V
∂x′d

∂θ
∂δ

∂θ
∂ω

∂θ
∂Pm

∂θ
∂H

∂θ
∂D

∂θ
∂x′d


=

 0 0 0 0 ∂V
∂x′d

1 0 0 0 ∂θ
∂x′d

 (3.13)

where:

∂V

∂x′d
=

−QeE2−2x′dP
2
e√

f1
− 4Qe

√
f2

(3.14)

∂θ

∂x′d
=

2Pef2 − Pex′d
(−4QeE2−8x′dP

2
e√

f1
− 4Qe

)
f2

√
E2f2 − 4P 2

e x
′2
d

(3.15)
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where:

f1 = −4Qex
′
dE

2 + E4 − 4x′dP
2
e (3.16)

f2 = 2
√
f1 + 2E2 − 4Qex

′
d (3.17)

3.3.3.3 Iterated Extended Kalman Filter (IEKF)

In order to achieve better convergence, Iterative EKF [73] is adopted. For each

time step in EKF there is one prediction and one update step. In Iterative EKF setup,

for each time step, there will be several iterations to update the Jacobian matrices and

calculate estimated measurements in the correction step. IEKF requires more computation

time in correction step compared to EKF.

EKF algorithm expands the measurement function hk in (2) in the correction stage

around x−k obtained as the best estimation of x from the prediction phase:

h(xk, uk, vk) = h(x̂−k , uk, 0) +Hz(x̂k − x−k ) + vk (3.18)

Accordingly, after the correction phase we have a better estimate of xk as in x̂k.

Using such estimate x̂k in (3.18) instead of x̂−k could decrease the linearization errors in

the rest of the estimation process and improve the estimate x̂k of the correction phase.

Iterative Extended Kalman Filter (IEKF) is based on repeating the linearization of h and

the correction phase on the improved estimate x̂ik where i is the number of the iteration.

A comparison of the estimation results obtained by EKF and iterative EKF for the

case study presented in Section 3.3.4 is shown in Fig. 3.3.

Two initial guesses of H are used for each estimation. It is found that Iterative

EKF can significantly increase the convergence rate towards the accurate parameter. The

initial guess of H is set to be 4 pu.s or 8 pu.s. In both cases, IEKF can find the accurate

estimation within two seconds. EKF however cannot reach the accurate estimation in ten
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Figure 3.3. Estimation results of the inertia constant based on Set 1 data using EKF and
iterative EKF

seconds. In addition, when the initial guess is 8 pu.s, EKF gives an estimation of a negative

number.

In the following case studies, IEKF will be used.

3.3.4 Case Studies

The study system is the classic two-area four-machine system in the literature [15]

(Fig. 3.4). A three-phase fault occurs at t=1 second on Load 1 bus. Load 1 is tripped

after 0.1 second. Voltage phasor data and current phasor data from a generator terminal

bus will be recorded. The sampling interval is 0.01s. The simulation is carried by Power

System Toolbox [74]. The recorded data will be used to test the EKF methods. Four sets

of simulation data will be recorded. To determine electromechanical states and parameters,

the data contain obvious electromechanical oscillations are desired. On the other hand,

measurements from digital fault recorders with high sampling rates and lasting less than

1 second are dominated by electromagnetic dynamics and hence are not suitable for the

proposed method.
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1. Set 1: In the first set, classical generator models are used in simulations. Hence

the Kalman filter dynamic model is exactly same as the simulation model. The

machine parameters are H = 6.5s, D = 6 pu, x′d = 0.25pu, E = 1.08pu, and

Pm = 0.85pu.

2. Set 2: In the second set, the damping is reduced to zero in the swing equation.

The simulation model is same as the estimation model.

3. Set 3: In the third set, subtransient generator model [17] including dynamics in

damping windings and field winding is used. The damping factor is zero. The

simulation model is more sophisticated than the estimation model.

4. Set 4: In the fourth set, subtransient generator model is used. The damping

factor is 6. Automatic voltage regulator (AVR) is enabled to get a stable system

response.

When damping factor is zero, the system lacks damping and the PMU data in Fig.

3.5 presents obviously poor damped oscillations. Testing on those data can demonstrate

that the proposed algorithm can converge well even the system is poorly damped.

At least two initial guesses will be used to demonstrate if EKF can converge to a

same estimation or not. For the two states and four parameter estimation problem, Sets

1-4 are used. For the two states and five parameter estimation problem, Sets 1 and 4 are

tested. Simulation data

The PMU data (V , θ, Pe, Qe) for the four sets are plotted in Fig. 3.5. Among

them, the power are used as input to the estimation model while the voltage phasor is

treated as the measurements.

3.3.4.1 Two States and Four Parameters Estimation

In this section, the formulated EKF algorithm in Section 3.3.3 will be tested. The

initial gain matrix P is the co-variance matrix of the estimate error and P will be updated

in EKF and converge to zero if EKF works. Hence the parameters in P are not important.
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However initial values of P matrix influence convergence rate. Therefore fine tuning is

needed. Co-variance matrix Q represents noise co-variance. Noise includes processing noise

and unmolded dynamics. Q is less deterministic. In often times superior filter performance

can be obtained by ”tuning” the filter parameters [75].

The co-variance matrix Q of the processing noise will be set differently for Sets

1&2 and Sets 3&4. Since Sets 1&2 are classical generator based simulation results and the

internal voltage is fixed, there is no unmodeled dynamics in H, D and x′d. Hence Q44,

Q55, and Q66 are set to zero. On the other hand, Sets 3&4 are subtransient model based

simulation data. Hence it is reasonable to model the unmodeled dynamics as noise in w2,

w3, w4, w5, and w6. The initial co-variance matrix is set to reflect the error in initial guess.

Table 3.1 documents the parameters used in EKF estimation.

Table 3.1. Covariance matrices for two-state four-parameter estimation
P Set 1&2 Set 3&4 Q Set 1&2 Set 3&4

P11 1 1 Q11 10−4∆t 10−4∆t
P22 30 30 Q22 10−3∆t 10−3∆t
P33 0.1 0.1 Q33 0 0
P44 5 5 Q44 0 0
P55 50 50 Q55 0 0
P66 1 1 Q66 0 0.01∆t
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Figure 3.6. The estimated rotor angle compared to the simulated rotor angle
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The rotor angle estimation matches very well with the simulated rotor angle in Set

1 and Set 2 scenarios. In Set 3 and Set 4, there is a discrepancy between the estimation

and the real value though the dynamic trends match each other well. The discrepancy can

be explained by comparing the classical machine model versus a two-axis machine model

(Fig. 3.7).

Ε
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)2/(]')''('[   j
qqdqd ejEIxxΕ

djx'

V

)2/()(  j
qd ejII

TerminalTerminal

Figure 3.7. Two-axis model versus a classic generator model

The two voltage sources are equivalent to each other [17]. Hence the classic model

voltage source can be expressed by:

E =
√

(E
′o
d + (x′q − x′d)Ioq )2 + (E′o

q )2 (3.19)

where x′q is the q axis transient reactance; E
′o
d , E

′o
q , and I

′o
q are the d and q axis components

of the voltage source and the current during steady state.

δ′o = tan−1(
E′oq

E′od + (x′q − x′d)Ioq
)− π/2 (3.20)

We notice that there is always a difference between the angle of the classical gen-

erator and the rotor angle (δ − γ = δ′o)). Therefore, there is always a discrepancy (δ′o)

between the estimated rotor angle and the simulated rotor angle when the simulation model

is subtransient model while the estimation model is a classical model.

The estimation of the rotor speed, the mechanical power, inertia constant, damping

factor and transient reactance using Set1 and Set 2 data sets are found to be good matches

of the simulation results. The results are shown in Figs. 3.8 - 3.12.
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Figure 3.8. The estimated rotor speed compared to the simulated rotor speed

Set 3 and Set 4 data are simulation data from subtransient generator model. Exci-

tation control is not modeled for Set 3 data. For Set 3 data, the estimation of H is higher

than the real value while for Set 4 data, the estimation of H is lower than the real value.

When the field voltage Efd is constant, the effect of the synchronous machine

field circuit dynamics such as the field flux variations causes a slight reduction in the

synchronizing torque component and increase in the damping torque component [76] at the

electromechanical oscillation modes. The linearized swing equation for a classical generator

can be expressed as:

s2(∆δ) +
D

2H
s(∆δ) +

Ks

2H
ω0(∆δ) =

ω0

2H
∆Pm. (3.21)

where Ks = ∂Pe
∂δ , D is called the damping torque component while Ks is called the syn-

chronizing torque component. Therefore, the characteristic equation is given by:

s2 +
D

2H
s+

Ksω0

2H
= 0 (3.22)
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Figure 3.9. The estimated mechanical power

The effect of field flux variations will change the synchronizing torque component

and the damping torque component by decreasing Ks and increasing KD. Detailed ex-

planation can be referred in [76] and [17]. A brief explanation is offered in this paper.

Considering the field flux variation, the linearized system model is shown in Fig. 3.13 [76]:

K1, K2, K3 and K4 are constants related to operating conditions, T ′d0 is the field

winding time constant. From Fig. 3.13, we can find the contribution of Ks and KD due

to field flux variation or ∆E′q.

∆Te
∆δ
|dueto∆E′

q
=
−K2K3K4

1 + sK3T ′d0

(3.23)

Substituting s by jω and we have:

Re
[

∆Te
∆δ

]
= −K2K3K4

1+ω2K2
3T

′2
d0

(3.24)

Im
[

∆Te
∆δ

]
=

K2K2
3K4T ′

d0

1+ω2K2
3T

′2
d0

(3.25)

≈ K2K4
ωT ′

d0
(3.26)
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Figure 3.10. The estimated damping factor

K2, K3 and K4 are positive numbers. Therefore, the impact of field flux variation

can cause a decreased synchronizing torque component due to armature reaction while an

increased damping torque component.

For a classical generator model, it is assumed that T ′d0 ≈ ∞. When T ′d0 is very

large, there is no effect on the damping torque component.

The characteristic equation becomes:

s2 +
DKfD

2H s+
KsKfsω0

2H = 0

Or :s2 + D′
2H′ s+ Ksω0

2H′ = 0 (3.27)

where KfD > 1 (increase in the damping torque component), Kfs < 1 (reduction in the

synchronizing torque component), H ′ = H/Kfs > H, and D′ = DKfD/Kfs > D.

Therefore, it is reasonable for EKF-based estimation to find the estimated inertia

and damping constant greater than the real values for Set 3 data.

The excitation control’s effect on damping and synchronizing torque components

at the oscillation frequency depends on the gain of the AVR and the system operating
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Figure 3.11. The estimated inertia constant

condition. In this case study, a high gain is chosen which introduces a positive synchronizing

torque component and a negative damping torque component [76]. Compared to the effect

of machine circuit dynamics, the effect of the AVR is much significant. Based on the same

analysis carried out in (3.27), it can be found that H ′ < H and D′ < D. Therefore, for

Set 4 data, it is reasonable that the estimated inertia constant and damping factor are less

than the real values.

For this two-state four-parameter estimation problem, two initial guesses are used.

Except for x′d for Set 3, all parameter estimation converges to the same or close results

within 10 seconds. Therefore, this EKF application is considered to be able to give con-

verged and reasonable estimation.

3.3.4.2 Impact of the Assumption of E

The impact of E assumption is shown in Fig. 3.14. Set 1 data is used for this test.

Different E values are assumed: 1.08, 1.1 and 1.2. The true value of E is 1.08 pu. It can

be observed that the value of E impacts the estimation of x′d a good deal. Its impact on

the other parameters such as Pm, H and D are much less significant.
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Figure 3.13. Linearized synchronous generator model considering field flux variation

3.3.4.3 Two-State Four-Parameter Estimation based on Measurements with

White Noise

In this section, Set 3 data are assumed to be polluted by white noise. The mea-

surements are presented in Fig. 3.15.

White noises are added on active power, reactive power and voltage. The estimated

states and parameters are presented in Figs. 3.16 and 3.17.

It is found that the algorithm can estimate accurate states when there is noise. All

parameters except H can be estimated accurately in ten seconds. The estimation of H
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Figure 3.14. Impact of E assumption on estimation

is greater than the true value due to modeling error which has been explained in Section

3.3.4.1.

3.3.4.4 Two States and Five Parameters Estimation

In Section 3.3.4.1, four parameters are estimated along with the two states. In this

section, estimation of two states (δ and ω) and five parameters (Pm, H,D,x′d and E) are

carried out using iterative EKF. Two sets of simulation data are used for EKF estimation.

The co-variance matrix Q of the processing noise will be set differently for Set 1 and

Set 4. Since Set 1 is classical generator based simulation results and the internal voltage

is fixed, there is no noise in Ek+1 = Ek. Hence Q77 is set to zero. On the other hand, Set

4 is subtransient model based simulation and there is no fixed internal voltage. Hence it is

reasonable to write Ek+1 = Ek + w7 and the noise co-variance is set to 0.001∆t where ∆t
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Figure 3.15. The measurements

is the sampling data time step. In addition, to make EKF’s co-variance matrix P converge

to zero as much as possible, the elements of P are also adjusted for two different test data.

Table 3.2. Covariance matrices for two-state five-parameter estimation
P Set 1 Set 4 Q Set 1 Set 4

P11 1 10 Q11 10−6∆t 10−6∆t
P22 50 50 Q22 10−2∆t 10−2∆t
P33 1 1 Q33 0 10−6∆t
P44 5 5 Q44 0 10−4∆t
P55 100 50 Q55 0 10−4∆t
P66 3 3 Q66 0 10−5∆t
P77 3 3 Q77 0 10−3∆t

Four sets of initial guess of estimated state variables X shown in Table 3.3 are used

for EKF estimation.

The estimation results for Set 1 data are plotted in Figs. 3.18 and 3.19. The

estimation results for Set 4 data are plotted in Figs. 3.20 and 3.21.
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Figure 3.16. The estimated states

Table 3.3. Initial guess of estimation
X Case 1 Case 2 Case 3 Case 4

X1 2.34 2.34 2.34 2.34
X2 ω0 ω0 ω0 ω0

X3 0.6 1 1 1
X4 8 4 4 8
X5 6 4 4 8
X6 0.3 0.1 0.2 0.4
X7 1.0878 1.0878 1.0878 1.1

From both cases, it is found that to estimate an additional E, EKF will reach

different sets of E and x′d with different initial estimated states. This is apparently not

wanted. In addition, a quick check of the co-variance matrix shows that the co-variance

matrix elements are approaching zero. Therefore, the EKF is converging. An explanation

can be offered by observing the power equations of (3.7). Given P , Q, V , θ, and two

equations in (7), two unknowns among E, δ, and x′d can be determined. This is based

on the knowledge that N-unknowns can be determined from n-equations if the Jacobian

matrix is not singular.
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Figure 3.17. The estimated parameters

Therefore, for the EKF problem investigated in this paper, where a two-order swing

equation and classical generator model are used to describe the system, the maximum

parameters we can estimate are limited to four.

3.3.5 Conclusion

In this paper, an EKF-based dynamic state and parameter estimation using model

decoupling technique is investigated. The application can perform real-time dynamic es-

timation for subsystems using PMU data where the real and reactive power are treated

as the input to the estimation model while the voltage and phase angle are treated as

the output from the estimation model. Based on a classic generator estimation model,

the proposed EKF method can successfully estimate the states and parameters related to

electromechanical dynamics. Simulation data generated from classical model, subtransient

model and subtransient model equipped with AVR are used to test the estimation. It is

demonstrated that the EKF-based estimation can give reasonable estimation for two-state

four-parameter estimation. It is also demonstrated that this EKF-based estimation has a

limited capability to handle the two-state five-parameter estimation.
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Figure 3.18. Estimated Pm, H and D for Set 1 data using four different initial X(0). Case
1: blue; Case 2: red; Case 3: green; Case 4: blue dot

3.4 Unscented Kalman Filter Based Estimation

The research proposes an algorithm to estimate the electromechanical parameters

and states of synchronous machines. The algorithm is based on Unscented Kalman Filter

and uses observations or measurements available at the output terminal of the machine and

polluted by colored noise. Testing of the algorithm was conducted against a model of the

same complexity and a model of a higher complexity. The contribution of this research is

twofold:1) Ability to estimate electromechanical parameters such as H and D which have

not been investigated in other machine estimation research and 2) a dual UKF filter is set

up to carry out the estimation.

Previous research has already engaged the Unscented Kalman Filter with parameter

estimation in of electric machines. Yet the estimations have required more data to be

available than the data provided by PMUs at the output of the machine. Valverde et

al [22] estimate magnetizing reactances xmd and xmq and field resistance rf (and various

electromagnetic states) using DFR and Unscented Kalman Filter (UKF). Azad et al [45]

estimate stator and rotor resistances and inductances (in addition to other electromagnetic
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Figure 3.19. Estimated E and x′d for Set 1 data using four different initial X(0). Case 1:
blue; Case 2: red; Case 3: green; Case 4: blue dot

states) using rotor and stator d and q axis voltages and currents with UKF or Extended

Kalman Filter (EKF). Additional mechanical measurements, i.e. rotor rotational speed

ω and rotor angle δ, are required in order for the estimation techniques to work in [22]

[45]. [22] highlights the difficulties in obtaining both xmq and the rotor angle at the same

time because there is a linear relationship between xmq estimation and the rotor angle

estimation, hence [22] uses either a sensor to measure the rotor angle or a fixed ration

between xmd and xmq. The simultaneous estimation of the rotor angle and the q axis

reactance xq is similarly challenging because of the linear relationship between xq and xmq,

xq = xls + xmq [17].

The research carried out in this dissertation aimed at providing an online estima-

tion of the synchronous machine electromechanical parameters and states while observing

terminal phasor states in the case where access to mechanical measurements (δ and ω) or

parameters (i.e. ration of xmd and xmq) are not available. The parameters to be estimated

are: the inertia H, the damping factor, D, the mechanical power Pm, and the q axis re-

actance xq and the states to be estimates are the angle rotor δ and the angle rotational
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Figure 3.20. Estimated Pm, H and D for Set 4 data using four different initial X(0). Case
1: blue; Case 2: red; Case 3: green; Case 4: blue dot

speed ω. The algorithm applied UKF on the available observations. The contribution

of the research is twofold : The simultaneous estimation of xq and δ and the complete

estimation of the electromechanical states and parameters all based on the minimum set

terminal phasor observations. The research use of UKF is due to its excellent processing

of non-linearity anomalies in non-linear state space systems [42]. The choice of electrome-

chanical parameters and states is due to their importance in the estimation of electrical

parameters as evidenced by [22] [45].

3.4.1 Synchronous Machine Flux Decay State Space System

Synchronous machines are studied according to various state space systems or mod-

els varying in the level of details or insights on the synchronous machine behavior. Sauer

et al [17] classify synchronous machines models based on the time constants used in the

relevant state space system and following the dynamic phenomena the model aims to study.

The estimation of electromechanical parameters and states calls for the study of the slow

transient dynamics. The slow transient dynamics can be studied between 0.1 s and 10 s

[17], in other words dynamics lasting less than 0.1 s can be ignored (although their effect
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Figure 3.21. Estimated E and x′d for Set 4 data using four different initial X(0). Case 1:
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will be modeled as process noise in the UKF). Such dynamics are related to electromagnetic

interactions among the rotor (field and damping circuits) and stator circuits.

Kundur [76] suggests to simplify the model of the synchronous machine by elimi-

nating the impact of rotor speed change and neglecting the damping circuits. Such system

can be described as follows (while neglecting the stator losses) [17]:

T ′do
dE′q
dt

= −E′q − (xd − x′d)Id + Efd (3.28)

dδ

dt
= ω − ωb (3.29)

2H

ωb

dω

dt
= Pm − Pe −D(

ω

ωb
− 1) (3.30)

Ẽ′ = [(xq − x′d)Iq + jE′q]e
j(δ−π/2) (3.31)

Ẽ′ = Ṽ + jx′dĨ (3.32)
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The output power at the terminal can be found to be:

Pe + jQe = Ṽ (Ĩ)∗ (3.33)

Pe = E′qIcos(δ − α) +
(xq − x′d)I2sin(2δ − 2α)

2
(3.34)

Qe = E′qIsin(δ − α) + (x′d − xq)I2cos2(δ − α)− x′dI2 (3.35)

The state space system (3.28) .. (3.30) has one unobserved variable (Efd), three

dynamic states E′q, δ, ω and six parameters H,D,Pm, xq, x
′
d, and T ′do, while considering all

the terminal quantities I, α, V, Pe, and Qe to be observed or available. (3.34) and (3.35)

can further be simplified by eliminating E′q between them:

Pe = (Qe + xqI
2)cot(δ − α) (3.36)

By simplifying (3.34) and (3.35) into (3.36) there will be no need to use (3.28) and

the number of parameters is reduced to four H,D,Pm, and xq and that of dynamic states

to two δ and ω, in addition to eliminating the unknown variable Efd. Such reduction

decouples the electromechanical system from the electromagnetic system (including the

excitation system) except for xq. The state space system in discrete mode is now:

δk+1 = δk + hωk − hωb + ζkδ (3.37)

ωk+1 = ωk + h
ωb(P

k
m − P ke )−Dk(ωb − ωk)

2Hk
+ ζkω (3.38)

Hk+1 = Hk + ζkH (3.39)

P k+1
m = P km + ζkPm (3.40)

Dk+1 = Dk + ζkD (3.41)

xk+1
q = xkq + ζkxq (3.42)

ζ represents the additive process noise.
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The observation Z of Pe (3.36) with additive noise ϑ will be used to correct the

estimation of the parameters ans states in the Kalman filter:

Zk = P ke + ϑk (3.43)

Zk = [Qke + xkq (I
k)2]cot(δk − αk) + ϑk (3.44)

3.4.2 The Unscented Kalman Filter

The Unscented Kalman Filter (UKF) is another extension to the recursive Kalman

filtering developed to deal with non-linear systems. UKF is part of the Sigma-Point Kalman

Filters family (SPKF) [43] which calculates the probability moments (variance and mean)

of a number of samples to address non-linearity anomalies when moving from one recursion

to the next recursion. This approach is different from the other non-linear Kalman filter

extension, the Extended Kalman Filter (EKF), which linearizes the non-linear functions,

through Jacobian matrices, around the current recursion in order to calculate the variance

and mean of the system of the next recursion.

UKF follows the general filtering process of the linear Kalman Filter: A prediction

of the states and their moments (variance and mean) in the next time step using the

recursive system, followed by a correction of the predicted moments using observation

equations. The main difference comes in the prediction state where the predicted moments

are based on a number of deterministic samples (called Sigma Points) of the states. The

variance and mean of the Sigma Points going through a non-linear transformation give a

very good representation of the states exact mean and variance going through the same non-

linear transformation. In other words, when dealing with non-linear function in discrete

recursive state space systems, it is better to find the Sigma Points of the state estimated

value, perform the non-linear transformation on the Sigma Points, find the mean and

variance of the transformed the Sigma Points which are now the predicted mean and

variance of the state. Such transformation is called Unscented Transformation (UT).
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Table 3.4. Unscented Transformation

Unscented Transformation Steps:

λ =a2(n+ κ)− n
n :number of states in the system

a :scaling factor 0 ≤ α ≤ 1

κ :scaling factor κ ≥ 0

Sigma Points χi :

χ0 =X̂k

χi =X̂k +
(√

(n+ λ)P
)
i

i = 1, . . . , n

χi =X̂k +
(√

(n+ λ)P
)
i

i = n+ 1, . . . , 2n

Weights of Sigma Points :

W0 = λ
n+λ

Wi = λ
2(n+λ) i = 1, . . . , 2n

Weights of covariance matrix :

W c
0 = λ

n+λ + 1− a2 + b

W c
i = λ

2(n+λ) i = 1, . . . , 2n

Propagated mean and covariance

X̂k+1
i =f(χi, U

k) i = 0, . . . , 2n

X̂k+1(−) =
∑2n

i=0WiX̂
k+1
i

PXX =
∑2n

i=0W
c
i (X̂k+1

i − X̂k+1(−))(X̂k+1
i − X̂k+1(−))T

Note: from Wehbe and Fan [60] c©2012 IEEE

The general scaled unscented transformation with the Unscented Kalman Filter

can be summarized as in Table 3.4 and in Table 3.5 and as described by [43, 42, 72] for a

given n state X non-linear recursive system f with a non-linear observation g:



Xk+1 = f(Xk, Uk) + ζk

Zk = g(Xk, Uk) + ϑk

Xk ∼ (X̂k, P k)

ζk ∼ (0, Qk)

ϑk ∼ (0, Rk)

(3.45)
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Table 3.5. Unscented Kalman Filter
Unscented Kalman Filter:

Prediction :

[Xk+1(−), PXX , χi] =UT (Xk(+)@f)

Xk+1(−) :predicted state

P k+1(−) =PXX +Qk

Correction :

[Ẑk+1, PZZ , χi] =UT (Xk+1(−)@g)

PXZ =
∑

iW
c
i (χi −Xk+1(−))(g(χi)− Ẑk+1)T

Gk =PXZP
−1
ZZ Kalman Gain

P k+1(+) =P k+1(−) −GKPZZGTK
Xk+1(+) =Xk+1(−) −Gk(Zk+1 − Ẑk+1)

Xk+1(+) :corrected state

Note: from Wehbe and Fan [60] c©2012 IEEE

3.4.3 Implementing UKF

Implementing UKF on the system described in Section 3.4.1 required the setting

UKF various parameters X,U,Z, n, a, κ, β and the nature and the statistical moments of

the noise variables ϑ and ζ representing the process and measurement uncertainties in the

recursive and observation equations (3.37...3.44).

The initial states and parameters vector X should include δ, ω,H,D, Pm, and xq.

Noise variables in Kalman filters are usually set to be additive white Gaussian noise with

mean of zero. However, the recursive equation of δ (3.37) requires the correct initial value

in order for the recurrent estimates to be correct. Since the initial value of δ is assumed to

be unavailable hence the relevant error ζδ will set to be colored noise with mean different

from zero. The rest of the process noise variables ζ(.) will be set to white noise of mean

equal zero. Simon [42] shows that dealing with colored noise with mean other than zero

is addressed by adding one new parameter representing this noise variable to the Kalman

filter. Accordingly, X will be amended to include ζδ as a parameter to be estimated.

Looking at (3.37)...(3.44) we noticed that xq is not used in the dynamic states

recursive equations (3.37) and (3.38) and it is used in the observation equation (3.44). It is

possible hence to estimate xq separately from the other parameters and states. We set up
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two dual parallel filters, and we divided X into X1 and X2. X1 includes δ, ω,H,D, Pm,

and X2 includes xq.

The UT parameters were set as follows κ = 0, a = 0.24, and β = 2 [43]. The choice

of a was critical because of the severe non-linearity of the observation function (3.53) which

contains the function cotangent. A small value of a will keep the sigma points of δ close to

each other and hence avoids the sever error caused by the the function cotangent of (3.44)

when the sigma points are spread over more than one period.

The input functions U to be available for the filter are: Qe, I and α. The measure-

ment is Pe.

The two UKF filters are set up as follows:

X1k ∼ (X̂1
k
, P1k) (3.46)

X2k ∼ (X̂2
k
, P2k) (3.47)

ζk ∼ (0, Qk) (3.48)

ζkδ ∼ (ζ̂kδ , Q
k) (3.49)

ϑk ∼ (0, Rk) (3.50)

Filter 1 is formed of:

X1 = [δ, ω,H, Pm, D, ζδ]
T (3.51)

X1k+1 = f1(Xk, Uk)

f1(Xk, Uk) =



δk + hωk − hωb + ζkδ

ωk + h
ωb(P

k
m − P ke )−Dk(ωb − ωk)

2Hk
+ ζkω

Hk + ζkH

P km + ζkPm

Dk + ζkD

ζkδ + ζkζδ



(3.52)
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Correction

X̂2k+1(+), P2
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Observation Zk+1

δ̂k+1(−) x̂k+1(−)
q

Figure 3.22. Implementation of UKF dual filters. Note: from Wehbe and Fan [60] c©2012
IEEE

Zk = Pek + ϑk

= [Qke + xkq (I
k)2]cot(δk − αk) + ϑk (3.53)

Filter 2 is formed of:

X2 = [xq] (3.54)

X2k+1 = f2(X2k) = X2k + ζkxq (3.55)

Zk = Pek + ϑk

= [Qke + xkq (I
k)2]cot(δk − αk) + ϑk (3.56)

Filter 1 and Filter 2 parallel estimations are shown in Fig. 3.22.
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3.4.4 Case Studies

Two cases were studied using the proposed algorithm. The first case (Section

3.4.5) estimates the electromechanical parameters of a synchronous generator modeled as

flux decay system, as in (3.28)-(3.32). In the second case (Section 3.4.6) the algorithm

estimates the electromechanical parameters of a synchronous generator modeled as sub-

transient system. The purpose of the case in Section 3.4.6 is to test the proposed algorithm

against the more complex system closer to physical machine system.

Each case study involves performing a three phase balanced fault on a synchronous

machine in the two area four machine system. One second following the clearance of the

fault, phasor measurements for the next 14 seconds were taken at a rate of 1000 Hz. Power

System Toolbox [77] under MATLAB was used in the simulations (see Appendix B for the

simulation data).

3.4.5 Case 1: Flux Decay Model

Flux decay model of a synchronous generator was simulated in this case. Since the

machine model is the same as the model used in the algorithm the process noise covariance

was set to 10−13 but for the rotor angle it was set to 10−10. The observation noise was set

to 10−7.

The choice of the initial values for the parameters was far from the simulated values

unless there is a way to estimate them. The initial values were taken as follows: δ0 slightly

> θ0, ω0 slightly > ωb, and P 0
m = P 0

e . Table 3.6 shows the initial values for the rest of the

parameters.

Table 3.6 shows the simulated parameters along with their estimated values while

Fig. 3.23 shows how the estimation errors are converging.

3.4.6 Case 2: Sub-transient Model

Sub-transient models have closer resemblance to real synchronous especially be-

cause of the modeling of the fast sub-transient dynamics. In this case, the same param-
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Figure 3.23. Convergence of parameters estimation errors for flux decay model. Note: from
Wehbe and Fan [60] c©2012 IEEE

Table 3.6. Results of case 1
Parameter Init value Sim. value Est. value Error

H 10 6.5 6.24 -4.1%
D 0 3 2.95 -1.8%
xq 1 1.5 1.61 +7.2%
Pm 0.71 0.797 0.795 -1.1%

Note: from Wehbe and Fan [60] c©2012 IEEE

eters of Case 1 (Section 3.4.6) were used with the addition of parameters and dynamics

describing the additional phenomenons. The state space system (3.52) is still valid in the

sub-transient model; however (3.34) and (3.35) will have errors leading to bigger errors in

(3.36) and the observation equation (3.53). Accordingly, the observation error ϑ of (3.53)

was substantially increased to 2× 10−1 whereas the process error was slightly increased to

10−6.

The choice of the initial values stayed the same as in Section 3.4.5: for the parame-

ters, it was far from the simulated values unless there is a way to estimate them: δ0 slightly

> θ0, ω0 slightly > ωb, and P 0
m = P 0

e .

The estimated values of the simulated parameters are shown in Table 3.7 while Fig.

3.24 shows how the estimation errors are converging.

The following remarks can be made:

1. The parameters estimated values are very close to the simulated values

2. xq and δ estimations are highly correlated
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Figure 3.24. Convergence of parameters estimation errors for the sub-transient model.
Note: from Wehbe and Fan [60] c©2012 IEEE

Table 3.7. Results of case 2
Parameter Init value Sim. value Est. value Error

H 10 6.5 7.15 +10.1%
D 0 3 3.02 +0.8%
xq 1 1.5 1.61 +7.2%
Pm 0.72 0.787 0.792 +0.7%

Note: from Wehbe and Fan [60] c©2012 IEEE

3. The first few recursions show a spike in ζδ estimation agreeing with the proposal

of this research that the error of δ has a mean 6= 0

4. The modeling of the error (as colored pr white noise) in any approximated state

space system plays a pivotal role in converging towards correct values.

3.4.7 Conclusion on UKF Based Estimation

In this research we showed an algorithm to be used to estimate the electromechan-

ical parameters and states of a synchronous generator. We demonstrated that a UKF

algorithm can give very good results for such estimations when it is based on flux decay

model of the synchronous machine while only the output data from the machine are avail-

able. We also showed that the modeling of error as colored error plays an important role

when the used state space system is an approximation of the simulated state space system.
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CHAPTER 4: LEAST SQUARES BASED ESTIMATIONS

4.1 Note to Reader

Portions of these results have been previously published (as a 1st author in [78]),

or submitted for publication (as a 3rd author in [79]), or will be published. The results are

utilized with permission of the publisher.

4.2 Introduction

Least squares based estimation (LSE) was made possible by the introduction of

digital computers which can process large amount of data. The main idea of least squares

estimation is to minimize the total error between a measured data set and proposed ob-

servations of the model subject to estimate. In its simplest forms LSE is a technique to fit

a certain polynomial, of the parameters to be estimated, to a certain time series of data

points [80]. In a more sophisticated approach, LSE forms the estimation basis for system

identification [12].

LSE approach has been used in power systems in the measurements based states

estimation [4]. In its simplest way, the approach is based on the availability of n measure-

ments z (such as active and reactive power Pe and Qe), then m states x (like voltage angle

θ and magnitude V ) when a linear relation A exists between z and x:

z = Ax (4.1)
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where:



z is [m× 1] vector

A is [m× n] matrix

x is [n× 1] vector

m ≥ n

⇒ x̂ = (A′A)
−1
A′z A′ is the transpose of A (4.2)

This LSE technique provides the estimation x̂ of x where the error |Hx̂− z|2 is

minimized, or simply the curve Hx̂ is fitted to the measurements z. It is noticed here that

the relation H is linear and algebraic. Section 4.3 will show how to supplement the LSE

with finite differences techniques in order to solve dynamic systems.

System Identification is used when we want to propose dynamic model to represent

a physical system based on measurements at the output of the system (Fig. 4.1). System

Identification estimate the parameters in the proposed model and validate its output[81].

Model and parameters estimation for synchronous machines and power subsystems is shown

in Section 4.4.

Physical system

Proposed model:

Error
to minimize

+

Input

DuCxy
BuAxx




- Validate

Acceptable?

Propose  
new model

No

Yes

Figure 4.1. Basic implementation of System Identification

Basic differences also exist between System Identification and Kalman filter ap-

proach when it to comes to processing input and measurements data since System Iden-

tification does batch processing of the data whereas KF does recursive processing of such

data.
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4.3 Finite Differences Based Estimation

The research in this section investigates the estimation of synchronous generator

states and parameters related to angular stability using PMU data. The method pro-

posed in this research uses finite difference technique and least squares method to evaluate

differential equations governing the synchronous machine using a time window of PMU

measurements. Sensitivity studies have been carried out to evaluate the impact of system

strength, transmission line length, machine controls (exciter and governor) and local load

on estimation accuracy. The simulation studies demonstrate the feasibility of the proposed

method in dynamic states and parameters estimation.

Synchronous machines equations involve differential and algebraic equations as

shown in (1.11). Finite differences can be used to transform the differential equations

into algebraic ones and hence simplifying the parameter estimation process.

This research aimed at providing an online estimation the synchronous machine

electromechanical parameters and study angular stability dynamics through the use of

time window of PMU recorded data. It was intended to use less input data and provide

an online method, while providing a less computing intensive method. In general, param-

eter estimation problem falls within the bigger family of system identification. System

identification methods can be divided into two sets: non parametric models (e.g. Fourier

Analysis) and parametric methods such as Least Squares [82]. We used Least Squares

and Finite Difference techniques to estimate the electromechanical parameters and related

state dynamics and study the effect of various operational conditions. This approach could

be developed to use parallel computation and run on multiple machines connected to the

same power system and hence run stability studies because the PMUs offer synchronized

data.

4.3.1 Proposed Algorithm

The research aims to estimate the synchronous machine electromechanical param-

eters and angular stability dynamics through the use of PMU recorded data. The syn-
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chronous machine is connected to a transmission network (Fig. 4.2) and the parameters to

be estimated are: transient reactance x′d rotor angle δ, rotor speed, inertia H, and turbine

Power Pm.

The model to be estimated is the equivalent classical model as defined by Anderson

et al [83] and assumes: constant voltage behind a transient reactance, mechanical power

is constant, no losses in the machine.

The time period during which this classical model, according to [76], is valid if

the study period is less than the time constant T ′d0, which is in the order few seconds for

synchronous machines.

Accordingly, we have:

Ẽ = (jx′d)Ĩ + Ṽ (4.3)

or,

E∠γ = (jx′d)I∠α+ V ∠θ (4.4)

where: E is the magnitude of the voltage source behind the transient reactance, γ is the

angle of the voltage source, x′d is the transient reactance of the stator, I and α are the

magnitude and angle of stator current, V and θ are the magnitude and angle of machine

terminal voltage.

This research uses data recorded by a PMU (the RMS and angle of both the voltage

and the current) at the terminal of the synchronous machine after a disturbance to find

the internal machine parameters within few seconds. The study period of few seconds is

required in order to cope with the requirements of study time validity for classical model.

The algorithm (Fig. 4.3) provided in this research follows these steps:

1. Find the transient reactance

2. Estimate the magnitude and angle of the machine electromagnetic force

3. Provide an estimation for the machine inertia and mechanical power
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In order to find the transient reactance, the research will develop a non-linear

relationship between the measured data by the PMU and the unknown voltage source

magnitude and the transient reactance of the machine. The fact of quasi constant value of

the voltage source magnitude will be used in order to transform the relationship to involve

one unknown parameters, the transient reactance, which will be estimated through least

squares fitting.

Once the transient reactance is found, the magnitude and angle of the voltage

source can be found.

The swing equation will allow the estimation of the unknown parameters inertia

and turbine power. Finite differences [84] will be used to estimate the rotor angle dynamics,

then we will have an overdetermined system which will be solved by least square estimation

(LSE). LSE has been used by power systems for state estimation as shown by Monticelli

[4].

,V Transmission 
Network 

djx'

PMU 

G1 

QP,

Figure 4.2. Synchronous machine connected to a transmission network. Note: from Wehbe
et al. [78] c©2012 IEEE

Let’s consider a synchronous generator connected to a transmission network as in

Fig. 4.2. A PMU is installed at the output of the synchronous generator G1 connected to

a load to measure the interaction between this machine and the network in terms of angle

and magnitude of both the voltage and current. In steady state, the differential equations

governing the synchronous machine behavior does not give much information since all the

time derivatives are equal to zero. However, upon a disturbance, the machine is in transient

mode and the states’ time derivatives are no longer equal to zero, a fact which allows us

to build a system of equations and then solve this system.
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 Algorithm 

Find stator 
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,
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Figure 4.3. Algorithm to find synchronous machine parameters. Note: from Wehbe et al.
[78] c©2012 IEEE

4.3.1.1 Estimating the Stator Transient Reactance

At the terminal of the synchronous generator we apply the phasor equation (4.4).

The unknown variable γ can be eliminated by calculating the magnitude of E and the

reactive power intercepted by the PMU Q:

E2 = V 2 + (x′dI)2 + 2x′dQ (4.5)

or, for every time step i where we consider x′d as constant:

E2 = V 2
i + (x′dIi)

2 + 2x′dQi (4.6)

Since we want to consider E to be quasi constant, we solve this problem by fitting

V 2
i + (x′dIi)

2 + 2x′dQi into a constant value of E2 by manipulating x′d.

We can say:

E ≈ constant⇒ E2 ≈ constant

⇒ V ar(E2) ≈ 0⇒ (E2 − E2
)2 ≈ 0 (4.7)
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where Var() means the variance and the bar sign over a variable denotes the mean of that

variable.

Hence and according to (4.7) the problem comes down to fitting E2 into E2. How-

ever, both E2 and E2 have unknown values we do the following transform in order to solve

the problem.

We use (4.6) to find E2:

E2 = V 2
i + x′d

2I2
i + 2x′dQi (4.8)

⇒ E2 = Vi
2 + x′d

2
Ii

2 + 2x′dQi (4.9)

Fitting E2 into E2 means, according to (4.6) and (4.9):

[Vi
2 + x′d

2
Ii

2 + 2x′dQi]− [Vi
2 + (x′dIi)

2 + 2x′dQi] ≈ 0 (4.10)

[x′d
2
Ii

2 + 2x′dQi − (x′dIi)
2 − 2x′dQi]− [Vi

2 − Vi2] ≈ 0 (4.11)

[x′d
2
Ii

2 + 2x′dQi − (x′dIi)
2 − 2x′dQi] ≈ [Vi

2 − Vi2] (4.12)

The problem has become according to (4.12) the fitting of the function [x′d
2Ii

2 +

2x′dQi − (x′dIi)
2 − 2x′dQi] into the data series [Vi

2 − Vi2] by manipulating the value of x′d.

We can do such fitting with least square techniques and obtain x′d.

4.3.1.2 Finding the Electromagnetic Force Magnitude and Angle

Looking back at (4.4), we will use the value of x′d found by (4.12) in addition to

the measured values of I∠α and V ∠θ by the PMU, in (4.4) in order to obtain E and the

voltage source angle (γ).

E∠γi = jx′dIi∠αi + Vi∠θi (4.13)
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4.3.1.3 Estimating the Machine Inertia and Turbine Power

The synchronous machine electromechanical coupling is governed by the swing

equation:

2H

Ω

∂2δ

∂t2
= Pm − Pe (4.14)

where H is the inertia of the machine, Pm is the mechanical power delivered to the machine

through the turbine, Ω is the synchronous speed and is equal to 377 rad/s, δ is the rotor

angle, and Pe is the electrical power delivered to the stator and is equal to:

Pe = Re(V I∗) (4.15)

In (4.15) all the terms are now known, hence Pe can be calculated at all time steps.

We substitute the calculated values of Pe in (4.14) which will have two unknown

machine parameters H and the mechanical power delivered to the machine Pm. On the

other hand, Pm is constant for a short period of time.

∂2δ
∂t2

can be calculated numerically by finite difference techniques since the value of

γ is available at all sampling numbers i thanks to (4.13). In the case of classic machine

δ = γ and in the case of subtransient machine model, δ = γ + constant. Finite difference

has been used in [32] and [20] in order to compute derivatives.

The swing equation at various time steps (i) can be rearranged as follows:

2

Ω

∂2δi
∂t2

H − Pm = Pei (4.16)

Then, it can be treated as overestimated system written as follows:

A×X = Z (4.17)

68



www.manaraa.com

where:

A =



2
Ω
∂2δ1
∂t2

−1

. .

2
Ω
∂2δi
∂t2

−1

. .


, X =

 H

Pm

 , Z =



−Pe1
.

−Pei
.


The overdetermined system (4.17) can be solved by finding the least squares esti-

mation X̂ of X given by [4] in order to find the optimum values for H and Pm:

X̂ = (A′A)−1A′Z (4.18)

where A′ is the transpose of A.

4.3.2 Simulations

We simulate the transmission network of Fig. 4.2 by two synchronous machines

connected by a radial system with: G1 represents the power system to be studied, x′d1

represents the transient reactance of G1, , x1 represents line reactance between the terminal

of G1 and Bus10, xl represents the reactance of the transmission line, G2 represents the

transmission network power system, Load2 represents a load connected to the transmission

network between the machine and the PMU. The sampling period we used in the simulation

was 0.01 s, the total time study was 10 seconds, and the time used for the estimation was

6 s, 2 s after the disturbance.

G2G1

Load#1 Load#2

1 10 2
jx1jx’d1 jxl

20
jx2 jx’d2

Figure 4.4. Two machines detailed system. Note: from Wehbe et al. [78] c©2012 IEEE
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The machine G1 was simulated by two-axis model (sub-transient model) as in [17].

The load is represented by constant active power Pl sink neglecting the sensitivity to the

voltage or to frequency, hence the load can also be represented by a constant resistance

(r + jx). The transmission network will be represented by a bigger synchronous machine

G2 also connected with a load (Fig. 4.4). See Appendix B for the simulation data

Ε

djx'I

V

)2/(]')''('[   j

qqdqd ejEIxxΕ

djx'

V

)2/()(  j

qd ejII
TerminalTerminal

Figure 4.5. Two-axis sub-transient model of synchronous machine versus a classical gener-
ator mode. Note: from Wehbe et al. [78] c©2012 IEEE

The algorithm will find the classical machine equivalent (Fig. 4.5) of the simulated

two-axis sub-transient model G1. The main difference between the classical equivalent

and the two-axis model reside in the magnitude of the voltage source behind the transient

reactance x′d and the rotor angle calculations. For the classical machine the magnitude of

the voltage source is considered constant, whereas for the two-axis model, the component

E′d shows small variations only after the q-axis open-circuit time constant (T ′qo generally

few hundreds of milliseconds) and the component E′q stabilizes after that especially with

the use of an exciter and as evidenced in Chow et al paper[23]. The angle of the voltage

source between the two model is also different as shown by Sauer et al [17]; in the two-axis

model it is δ − π/2, δ being the rotor angle, whereas in the classical model the angle is

γ = δ + δ′o. The classic model voltage source parameters are as follows [17]:

E =
√

(E
′o
d + (x′q − x′d)Ioq )2 + (E′o

q )2 (4.19)
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where x′q is the q axis transient reactance; E
′o
d , E

′o
q , and I

′o
q are the d and q axis components

of the voltage source and the current during steady state.

δ′o = tan−1(
E′oq

E′oq + (x′q − x′d)Ioq
)− π/2 (4.20)

We notice that the difference in the angle between the classical equivalent and the

two-axis model (δ′o + π/2) is constant. Consequently, the dynamics (time derivatives) of

the two angles should be very close to each other and we can substitute the value of second

derivative of γ as the value of the second derivative of (δ) in the swing equation (4.14).

4.3.2.1 Impact of System Inertia

In this set of simulations we install the PMU at Bus 1 and we remove the Load1

connected to the machine G1. We estimate the machine transient reactance, inertia and

turbine power. We vary the inertia of the system (machine G2) and we record estimations

in Table 4.1. The reactance of the transmission line xl is 1.17 .

Table 4.1. Impact of system inertia on estimated parameters
Parameter Simulated Estimated Estimated Estimated

x′d1 0.25 0.204 0.365 0.39

H1 6.5 7.35 6.81 6.74

Pm1 4.2 4.24 4.2 4.2

H2 16.5 60 100

Note: from Wehbe et al. [78] c©2012 IEEE

The following remarks can be made:

1. The estimation of H1 gets closer to the real H1 when H2 increases. This can be

attributed to the fact that when H2 is big (100 s) then the machine G2 behaves

like an infinity bus. In this case the PMU is estimating the overall inertia of the

system which is (H1×H2)/(H1+H2) which is very close to H1. In the case when

the system inertia gets smaller (16.5 s) the two machines show greater coherency

(as evidenced by the rotor angles of G1 (δ) and G2 (δ2) in Fig. 4.6. We can see

as the system inertia H2 increases the rotor angle difference between the two
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machines also increases and becomes less constant which means less coherency

and the system inertia gets closer to (H1 ×H2)/(H1 +H2) [44].

2. We notice that the estimated x′d1 increases with H2. This can be understood by

looking at the angle of Fig. 4.6, as H2 increases, the angle δ− δ2 increases, the

reactance xt of the line, which is equal (x′d1 + x1 + xl + x2 + x′d2), between E1

and E2 increases, as shown in Fig. 4.7, hence the estimated (x′d1 also increases).

3. The two variables in the swing equation δ̈ and −Pe behave as shown in Fig.

4.8 where they oscillate in phase to show the linear relationship between them

shown in (4.14).

4. Fig. 4.9 shows how the estimated voltage source magnitude closely follows

the simulated voltage source magnitude and is more constant than another

estimation of x′d (in this case x′d = 0.23).

As a summary, the greater the system inertia is the better the estimation of the

synchronous machine inertia is.
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Figure 4.6. Variation of rotor angle difference with the system inertia. Note: from Wehbe
et al. [78] c©2012 IEEE

4.3.2.2 Impact of Machine Controls

In this simulation (PMU at Bus 1 and no Load1) we equipped the machine G1

with some controls namely an exciter and a governor and we kept the reactance of the

transmission line xl at 1.17 . The results are summarized in Table 4.2.
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Figure 4.7. Impact of system inertia H2 on estimated xt. Note: from Wehbe et al. [78]
c©2012 IEEE
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Figure 4.8. Oscillations of electric power of the machine and the rotor angle dynamics /
H2 = 16.5 Note: from Wehbe et al. [78] c©2012 IEEE

The following remarks can be made:

1. The estimation of x′d gets smaller when the machine controls are used. This

can be attributed to the fact that the exciter is stabilizing the machine terminal

voltage hence the point of constant voltage inside the machine will get closer

to the terminal which projects a smaller transient reactance.

2. The estimated H1 gets closer to the simulated H1 with the use of machine

controls. The reason could be the governor which will try to stabilize the rotor

speed around one pu . Consequently, governor control has the similar effect

as an infinite bus which ensures the machine having a constant rotating speed

(Fig. 4.10).
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Figure 4.9. Comparison between the simulated and estimated voltage source / H2 = 16.5.
Note: from Wehbe et al. [78] c©2012 IEEE

Table 4.2. Impact of machine controls on estimated parameters
Parameter Simulated Estimated Estimated

(no controls) (with controls)

x′d 0.25 0.204 0.186

H1 6.5 7.35 7.09

Pm1 4.2 4.24 4.18

H2 16.5

Note: from Wehbe et al. [78] c©2012 IEEE

3. The assumption of the mechanical power being quasi constant is also investi-

gated. Fig. 4.11 shows the variation of the mechanical power of the simulated

machine G1 as a function of time which shows very small ripples. As a matter

of fact, the statistical variance of this mechanical power is in the order of 1e−4

which is very small compared with the mean of Pm of 4.2 pu .

As a summary, machine controls (especially the governor) will make the estimation

of the synchronous generator inertia more accurate.

4.3.2.3 Impact of Transmission Line Length

In this simulation we change the reactance of the transmission line to simulate a

weaker or a stronger connection to the system. The results are summarized in Table 4.3.

The following remarks can be made:

1. We notice that the estimated x′d decreases with the transmission line length.
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Figure 4.11. Variation of the mechanical power. Note: from Wehbe et al. [78] c©2012 IEEE

2. We notice that estimated H1 increases while the transmission line length de-

creases.

In order to understand the impact of the transmission line reactance, we will look

at the simple two machines shown in Fig. 4.12. Machine G1 is connected through a short

line (represented by the reactance x) to a Bus 10 and the bus is connected through a longer

transmission line (represented by the reactance xl > x) to a bigger machine. A PMU will

be installed at Bus 10 and we will ignore the impact of machine reactances for simplification

purposes. It is important to note that the system of Fig. 4.12 can also be represented by
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Table 4.3. Impact of transmission line reactance on estimated parameters
Parameter Sim. Est. Est. Est. Est.

x′d 0.25 0.28 0.204 1.5e−5 3e−6

H1 6.5 6.92 7.35 8.55 9.1

Pm1 4.2 4.22 4.24 4.28 4.29

xl = 1.35 1.17 0.9 0.72

Note: from Wehbe et al. [78] c©2012 IEEE

a single machine connected to an infinity bus system ([23] and [44]). In order to study the

electric characteristics of the system in Fig. 4.12, we will find the Thevenin equivalent of

the machines G1 and G2 seen from the Bus 10. Such Thevenin equivalent is a machine

GTh with voltage source ẼTh. We will assume E1 ≈ E2.

xTh =
x× xl
x+ xl

(4.21)

ẼTh =
xẼ2 + xlẼ1

x+ xl
(4.22)

Equation (4.21) says that the equivalent reactance will decrease with smaller xl,

this could be the reason for x′d decreasing.

We also note that in the case xl > 10x (4.22) becomes:

ẼTh ≈
xlẼ1

x+ xl
≈ Ẽ1 (4.23)

Equation (4.23) means that the machine GThis almost completely independent

from the machine G2 and the PMU at Bus 10 will measure G1 only. In other words, if the

transmission line increases then the equivalent machine GTh will get closer to representing

machine G1 and its inertia only. If the transmission line decreases then the equivalent

machine GTH will represent both machines G1 and G2 and their inertias.

As a summary, the longer the transmission line to the system is the more accurate

the estimation of the synchronous generator parameters.
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Figure 4.12. Two machines and simple radial line. Note: from Wehbe et al. [78] c©2012
IEEE

4.3.2.4 Impact of Load Level

In this set of simulations we put the PMU at Bus 10 we instate a load Load1

between the PMU and the generator G1 (Fig. 4.4), then we vary the real power transfer

through the PMU from G1 to G2 by varying the load Load1. We obtain the estimation

results in Table 4.4:

Table 4.4. Impact of power transfer level on estimated parameters
Parameter Sim. Est. Est. Est. Est. Est.

x(= x′d + x1) 0.34 0.336 0.1 4.8e−5 3.1e−8 0.08

H1 6.5 7.2 8.6 9.1 8.3 8.2

Pm1 3.8 3.82 3.4 2.9 1.93 1.93

Load1 zero 0.5 1 2 2

PowerTransfer 3.55 3.1 2.68 1.76 1.88

H2 16.5 16.5 16.5 16.5 66

Note: from Wehbe et al. [78] c©2012 IEEE

The following remarks can be made:

1. We notice that the estimated reactance x decreases as Load1 increases

2. We notice that the estimated H1 increases as the load Load1 increases

The effect of the load between the PMU and G1 can be understood from the

Thevenin equivalent of the system (G1 and Load1 which is simulated as a resistance r) and

as illustrated in Fig. 4.13. The Thevenin equivalent is now the machine G′1 in series with

a resistance R and a reactance jX. The resistive part R will introduce a quasi-constant

active power loss in the swing equation which will be deducted from the mechanical power,

that explains that the power of Load1 added to the estimated mechanical power will almost

equal the simulated mechanical power.

77



www.manaraa.com

The magnitude of the voltage source of the machine G′1, as per the Thevenin trans-

formation will be equal to E′ with:

E′ = B × E1 (4.24)

where B < 1 and is equal to:

B =

√
r2

r2 + x′2d1

(4.25)

Now that Load1 is transformed into the linear impedance we can use (4.22) and

replace x by (−jR+X) and E1 by E′1 and we will get for the whole system:

ẼTh =
(−jR+X)Ẽ2 + xlẼ

′
1

−jR+X + xl
(4.26)

ẼTh =
(−jR+X)Ẽ2 + (xlB)× Ẽ1

−jR+X + xl
(4.27)

In other words, the transmission line reactance has been reduced by the factor B

which is less than 1. Since the transmission line reactance is now reduced then transmission

line is shorter, the connection with the system is stronger, and as discussed in para 4.3.2.3

we expect a higher inertia estimation. Looking at (4.25) we realize, the higher the load is,

the lower r is, the lower B is, the higher the reduction of the transmission line is, and the

higher the estimation of the inertia will be, this is what we have in Table 4.4.

G1
10

jx’d1

r

G’1
10

jx1R

Load1

Figure 4.13. Thevenin equivalent of a machine with a load. Note: from Wehbe et al. [78]
c©2012 IEEE

As a summary, the lower the local load is the more accurate the estimation of the

synchronous generator parameters.
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Observing the simulation results in this section, we conclude that the accuracy of

the synchronous generator parameters increases when:

1. The system inertia is higher

2. Machine controls (especially governor) are used

3. The transmission line is longer

4. The local load is lower

4.3.3 Application on Real World Data

In this section, a variation of the finite difference method will be applied on real

PMU data extracted from an operating PMU network on the electric grid.

A set of real world data of the Eastern Interconnection PMUs was recorded by

NASPI Real Time Dynamics Monitoring System (RTDMS) regarding a generator trip

event was obtained and analyzed using the finite differences for the purpose of dynamic

state/parameter estimation. NASPI RTDMS shows significant oscillations. Frequency

plots are shown in Fig. 4.14.
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Figure 4.14. Frequency plots
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Seven locations P0 -P7 are selected. They are located from west to east. The

voltage phase angles are plotted in Fig. 4.15 and the voltage magnitudes are shown in Fig.

4.16. The voltage phase angles are reference angles. The reference bus is chosen to be a

bus located in Tennessee Valley Authority.
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Figure 4.15. Voltage phase angles. Reference bus is located in TVA

From Fig. 4.15, we can observe that ∠V̄0 > ∠V̄1 > ... > ∠V̄6. Hence the power

transfer direction is from west to east since the voltage phase angles decrease from west to

east. This can also be confirmed by the power flow measurements on some PMUs. Note

only few PMUs have data for real power and reactive power. Through majority of the

PMUs have voltage phasor data. The frequencies measured at buses decrease. This shows

that loads in the system exceeds generation. The event is a generator trip event at west.

Starting from t = 8s, it is obvious that the system suffers an active power unbalance

since the frequencies decrease. Voltage phase angles of P0 and P1 have significant reduction

(about 10 degree) while the voltage phase angles of the other locations (P2 –P6) have

insignificant reduction.

Finite differences were applied in this section to the PMU data in order to calculate

the derivatives wrt. time. First we applied the algorithm to the PMU data from P0.
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Figure 4.16. Voltage magnitudes

The inputs of the estimation algorithm are a time series of voltage phasors (angle and

magnitude) and current phasor as shown in Fig. 4.17. The phase angles are all related to

the voltage phase angle at Bus P1. The outputs of the estimation algorithm are internal

generator voltage phasor (angle and magnitude), transient reactance and equivalent inertia.

The first step of the finite difference method is to estimate the transient reactance

by curve fitting technique. We find that x′d = 0.0209.

With x′d available, the internal voltage phasor Ē can be estimated. Figs. 4.18 and

4.19 present the internal voltage magnitude and the phase angle. The measured voltage

magnitude and phase angle are also presented in the figures.

In order to obtain the equivalent inertia, The swing equation for the synchronous

machine classical model was used:

2H

ω0

∂2δ

∂t2
= Pm − Pe (4.28)
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Figure 4.17. Inputs of the estimation algorithm: Finite Difference Method. Phase angles
are relative to the ones of P1

In the classical model, Pm is considered constant, hence deriving both side wrt.

time leads to:

2H

ω0

∂3δ

∂t3
=
∂Pe
∂t

(4.29)

H = −ω0

2
(
∂Pe
∂t

)/(
∂3δ

∂t3
) (4.30)

The derivative of Pe and the 3rd derivative of δ should be obtained. When obtaining

the numeric derivatives of real world data using finite differences, it is found that the

derivative of δ is contaminated with white noise which is difficult to remove as shown in

Fig. 4.20. With white noise presented, the computed inertia also presents significant white

noise. White noise is the key issue that affects the accuracy of this algorithm.

To solve this issue, digital filter techniques is introduced to deal with the estimated

rotor angle. Chebshev filter is used in this case with the sampling window set to be 64

sample to do the filter. The Chebshev filter time-domain and frequency domain function

are shown in Fig. 4.22. With Chebshev filter applied, the internal angle waveform will be
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Figure 4.18. Estimated internal voltage magnitude compared with the measured voltage

smoothed out (shown in Fig. 4.21). Similarly, the power waveform is smoothed out (shown

in Fig. 4.24).

With the smoothed waveforms, the first order derivative of Pe and the 3rd order

derivative of δ are obtained and presented in Fig. 4.25. The equivalent system inertia can

be computed from (4.31):

H = −ω0

2
(
∂Pe
∂t

)/(
∂3δ

∂t3
) (4.31)

Fig. 4.25 presents the derivative of Pe and the denominator in (4.31). We select

an instant at t = 9.47 second and find the dPe
dt and d3δ

dt . The inertia for the equivalent

generator behind P0 can be found to be 1300 seconds pu.

4.3.4 Conclusion on Finite Difference Based Estimation

In this research we showed a method based on PMU measurements and least squares

aimed at estimating the electrical and mechanical parameters and angular stability dynam-

ics of synchronous generators under various operating conditions. We showed that under

real conditions, where the system inertia is close to infinity, the proposed method provides

accurate estimation of the parameters.
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4.4 System Identification

This research proposes a new modified classical model for the synchronous machine

based on the two-axis model having active and reactive power as input and voltage phasor

magnitude and angle as output. The research will estimate the parameters of the proposed

model and will validate its output using system identification methodology. The research

will apply the proposed model on two cases involving a single machine and a power sub-

system and will estimate the inertia and the transient reactance. The contribution of this

research is the higher accuracy of the proposed model output compared with the classical

model output due to the consideration of the effects of some disregarded dynamics in the

classical model. The system matrix will be modified in order to ensure stability and prevent

error propagation.

System identification is a non-Bayesian approach used to find systems structures

and estimate their parameters [12]. The objective of system identification is to use exper-

imental or measured data as input and output of proposed model structure describing a

physical system in order to estimate the proposed model parameters. System identification
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Figure 4.20. Derivatives with white noise

has been used in power electronics research in order to identify power converters [33, 34],

to model large signal power electronics systems [35], and to estimate DC link model pa-

rameters in VSC-HVDC system [36]. It has also been used in power systems research in

the design of probing signals for the estimation of inter-area electromechanical modes [37],

and in finding the state space system for multi-input-multi-output models of power systems

[38].

Burth et al. [40] points out to the difficulty in estimating synchronous machine

parameters based on its output. The reason is the complicated structure of the synchronous

machine which incorporates lots of parameters yet the effect of each parameter is not

clearly reflected in the output (recorded by PMU or DFR), i.e. the generator output

observations are not rich. In order to circumvent such estimation difficulties, researchers

have used various additional information. Accordingly and in machine estimation, [22] and

[45] use additional mechanical measurements, i.e. ω and δ, whereas [60] and [46] fix the

process error covariance to specific values. Power area equivalent machine was estimated

by [23] using the inter-area frequency in addition to the PMU measurements. Burth et
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Figure 4.21. δ before and after Chebshev filter
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Figure 4.22. Chebshev filter

al. [40] suggests to apply parameters sub-set selection which focus on finding the best set

of parameters which can be estimated with reasonable amount of precision for a specific

problem formulation. [40] uses the Hessian matrix of the objective function to find the

parameters sub-set. Another approach for sub-set selection is the study of sensitivity

matrix as shown by Cintron-Arias et al. [39]. The two approaches are correlated and both

based on Jacobian calculation. It is one of the objectives of this research to select a sub-set

of parameters to estimate based on sensitivity matrix.

86



www.manaraa.com

0 5 10 15 20 25 30 35
−0.02

−0.01

0

0.01

0.02

0.03

δ̇

0 5 10 15 20 25 30 35
−0.06

−0.04

−0.02

0

0.02

0.04

˙̇ δ

time (sec)

Figure 4.23. Derivatives of δ after Chebshev filter

It is one of the objectives of this research to extend system identification to esti-

mate synchronous machines and power systems parameters based on the output data only

provided by PMUs and to provide a systematic approach to immune such estimation from

the impact of the process error. This research will carry out:

1. Derive a modified classical (electromechanical) synchronous machine model

from the two-axis model by considering the effects of the eliminated dynamics.

The proposed model will be validated against the classical model in order to

show the improvements.

2. Identify the parameters which can be estimated with high confidence from those

subject to low confidence estimation using sensitivity analysis based on PMU

output

3. Estimate the parameters of the modified model using system identification on

PMU data.

4. Analyze the origin of the model error and study ways to mitigate its impact on

the estimated parameters and the output of the proposed model
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Figure 4.24. Pe before and after Chebshev filter

The rest of this chapter is organized as follows: Section 4.4.1 will derive the small

signal model of the proposed modified classical machine and analyze the impact of the

model error, Section 4.4.2 will introduce system identification grey box, and Section 4.4.3

will show the simulation and output validation of a single synchronous machine and of a

power sub-system.

4.4.1 Small Signal Linearized Model Suitable for PMUs

The purpose of this section in to build a linearized ste-space model having ∆Pe

and ∆Qe as input and ∆V and ∆θ as output as shown in Fig. 4.26.

4.4.1.1 Linearized System for the Two-axis Model

Synchronous machine two-axis model with no governor nor exciter controls and

ignoring the sub-transient dynamics [17] can be described by:

∂δ′

∂t
= ω − ω0 (4.32)

2H

ω0

∂ω

∂t
= Pm − Pe (4.33)
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T ′do
∂E′q
∂t

= −E′q − (xd − x′d)Id + Efd (4.34)

T ′qo
∂E′d
∂t

= −E′d − (xq − x′q)Id (4.35)

[E′d + (x′d − x′q)Iq + E′q] = jx′d(Id + jIq) + V ej(θ−δ
′+π/2) (4.36)

The the power expressions can be found:


Pe = IdV sin(δ′ − θ) + IqV cos(δ′ − θ)

Qe = IdV cos(δ′ − θ)− IqV sin(δ′ − θ)
(4.37)

Using (4.36) to find: 
Id =

E′
q−V cos(δ′−θ)

x′d

Iq =
−E′

d+V sin(δ′−θ)
x′q

(4.38)

Then we find the power-voltage relationship in plugging (4.38) in (4.37):



Pe = V
x′dx

′
q

{
x′qE

′
q sin(δ′ − θ)− x′dE′d cos(δ′ − θ)+

1/2× (x′d − x′q)V sin(2δ′ − 2θ)
}

Qe = V
x′dx

′
q

{
x′qE

′
q cos(δ′ − θ) + x′dE

′
d sin(δ′ − θ)+

1/2× [(x′d − x′q)V cos(2δ′ − 2θ)− (x′d + x′q)V ]
}

(4.39)

Simplifying by neglecting the transient saliency (x′d = x′q), (4.39) becomes:


Pe =

E′
qV sin(δ′−θ)−E′

dV cos(δ′−θ)
x′d

Qe =
E′
qV cos(δ′−θ)+E′

dV sin(δ′−θ)−V 2

x′d

(4.40)

On the other hand, the synchronous machine classical model can be obtained by

reducing the two-axis model when setting T ′qo is set to zero (i.e. ignoring the quick q

axis dampers dynamics) and T ′do is extended to ∞ (i.e. extending the effect of the d axis
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where the field is located). Consequently, such simplification keeps the electromechanical

dynamics in (4.32) and (4.33) and completely disregards E′d and E′q dynamics.

The simplified model in this research will be based on differential equations de-

scribing the voltage source angle δ and the rotor speed ω and will include the effect of

E′q and E′d. According to [1] and [17] the difference γ between the rotor angle δ′ and the

voltage source angle δ is almost constant and is negligible when studying angle dynamics.

Fig. 4.27 [1] shows γ, δ′, and δ. Accordingly:

δ′ = δ + γ ⇒ (4.41)

∆̇δ′ = ∆̇δ + ∆̇γ (4.42)

Careful attention at γ (Fig. 4.27)shows the following:

γ = tan−1

(
E′d
E′q

)
⇒ (4.43)

˙(∆γ) = − E′d0

E′d0
2 + E′q0

2
˙(∆E′q) +

E′q0
E′d0

2 + E′q0
2

˙(∆E′d) (4.44)

When E′d and E′q dynamics are ignored ∆̇γ = 0. Based on (4.42) and (4.44):

∆̇δ = ∆̇δ′ − ∆̇γ

⇒ ∆̇δ = ∆ω +
E′d0

E′d0
2 + E′q0

2
˙(∆E′q)−

E′q0
E′d0

2 + E′q0
2

˙(∆E′d) (4.45)

We need to find ˙(∆E′q) and ˙(∆E′q). Based on (4.34) and (4.35), we have:

˙(∆E′q) =
1

T ′do
[−∆E′q − (xd − x′d)∆Id + ∆Efd] (4.46)

˙(∆E′d) =
1

T ′qo
[−∆E′d − (xd − x′d)∆Iq (4.47)

91



www.manaraa.com

From (4.38) ∆Id and ∆Iq are obtained and then plugged in (4.46) and (4.47) to

formulate ˙(∆E′q) and ˙(∆E′d):

∆Id = 1
x′d



1

− cos(δ′0 − θ0)

V0 sin(δ′0 − θ0)

−V0 sin(δ′0 − θ0)



T 

∆E′q

∆V

∆δ′

∆θ



∆Iq = 1
x′q



−1

sin(δ′0 − θ0)

V0 cos(δ′0 − θ0)

−V0 cos(δ′0 − θ0)



T 

∆E′d

∆V

∆δ′

∆θ



(4.48)



˙(∆E′q) =
xd−x′d
T ′
dox

′
d



−xd/(xd−x′d)

cos(δ′0 − θ0)

−V0 sin(δ′0 − θ0)

V0 sin(δ′0 − θ0)

x′d/xd−x′d



T 

∆E′q

∆V

∆δ′

∆θ

∆Efd



˙(∆E′d) =
xq−x′q
T ′
qox

′
q



−xq/(xq−x′q)

sin(δ′0 − θ0)

V0 cos(δ′0 − θ0)

−V0 cos(δ′0 − θ0)



T 

∆E′d

∆V

∆δ′

∆θ



(4.49)

The system (4.49) can be verified by looking at the special case of the machine

connected to an infinity bus and neglecting both E′d dynamics and resistances. In this
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case, the quantities V0 and θ0 are considered those of the infinity bus and both x′d and

xd will include the transmission line reactance, then (4.49) will transform to the system

already shown by Anderson et al. [83]:

˙(∆E′q) =
xd − x′d
T ′dox

′
d


−xd/(xd−x′d)

−V0 sin(δ′0 − θ0)

x′d/xd−x′d


T 

∆E′q

∆δ′

∆Efd

 (4.50)

In (4.49) ∆θ and ∆V are used as input to the state space model. However the inter-

est is to formulate (∆Pe and ∆Qe) as the input because (∆Pe and ∆Qe) are representative

to the changes of the transmission system the machine is connected to which can be done

by obtaining the small signal model for Pe ans Qe around an equilibrium point using (4.40):

∆Pe =
1

x′d



E′q0 sin(δ′0 − θ0)− E′d0 cos(δ′0 − θ0)

E′q0V0 cos(δ′0 − θ0) + E′d0V0 sin(δ′0 − θ0)

−E′q0V0 cos(δ′0 − θ0)− E′d0V0 sin(δ′0 − θ0)

V0 sin(δ′0 − θ0)

−V0 cos(δ′0 − θ0)



T 

∆V

∆δ′

∆θ

∆E′q

∆E′d


(4.51)

∆Qe =
1

x′d



E′q0 cos(δ′0 − θ0) + E′d0 sin(δ′0 − θ0)

E′d0V0 cos(δ′0 − θ0)− E′q0V0 sin(δ′0 − θ0)

E′q0V0 sin(δ′0 − θ0)− E′d0V0 cos(δ′0 − θ0)

V0 cos(δ′0 − θ0)

V0 sin(δ′0 − θ0)



T 

∆V

∆δ′

∆θ

∆E′q

∆E′d


(4.52)

Solving (4.52) in order to find the small signal model for V and θ:

∆θ

∆V

 =

1

0

∆δ′ +

JθPe JθQe

JV P JV Qe


∆Pe

∆Qe

+

JθE′
q

JθE′
d

JV E′
q

JV E′
d


∆E′q

∆E′d

 (4.53)
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JθPe , JθQe , JV Pe , JV Qe , JθE′
q
, JθE′

d
, JV E′

q
, and JV E′

d
represent the Jacobian of ∆θ

and ∆V around the equilibrium point. They can be preliminary expressed as:

JθPe =
x′d[2V0 − E′q0 cos(δ′0 − θ0)− E′d0 sin(δ′0 − θ0)]

V0D
(4.54)

JθQe =
x′d[E

′
q0 sin(δ′0 − θ0)− E′d0 cos(δ′0 − θ0)]

V0D
(4.55)

JV Pe =
x′d[E

′
q0 sin(δ′0 − θ0)− E′d0 cos(δ′0 − θ0)]

D
(4.56)

JV Qe =
x′d[E

′
q0 cos(δ′0 − θ0) + E′d0 sin(δ′0 − θ0)

D
(4.57)

JθE′
q

=
[E′d0 − 2V0 sin(δ′0 − θ0)]

D
(4.58)

JθE′
d

=
[2V0 cos(δ′0 − θ0)− E′q0]

D
(4.59)

JV E′
q

=
−E′q0V0

D
(4.60)

JV E′
d

=
−E′d0V0

D
(4.61)

D = E′0
2 − 2E′0V0 cos(δ0 − θ0) (4.62)

Using (4.40) around the equilibrium point leads to simplified expressions (with only

one unknown x′d) which are used in the estimation process replacing (4.54), (4.55), (4.56),

and (4.57):

JθPe =
V 2

0 x
′
d −Qe0x′d

2

(Pe0x′d)
2 + (Qe0x′d)

2 − V 4
0

(4.63)

JθQe =
Pe0x

′
d

2

(Pe0x′d)
2 + (Qe0x′d)

2 − V 4
0

(4.64)

JV Pe =
Pe0V0x

′
d

2

(Pe0x′d)
2 + (Qe0x′d)

2 − V 4
0

(4.65)

JV Qe =
Qe0V0x

′
d

2 + V 3
0 x
′
d

(Pe0x′d)
2 + (Qe0x′d)

2 − V 4
0

(4.66)
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We use (4.53) in (4.49) in order to get the small signal system for E′q and E′d: ˙∆E′q

˙∆E′d

 =

JĖ′
qE

′
q

JĖ′
qE

′
d

J
Ė′
dE

′
q

J
Ė′
dE

′
d


∆E′q

∆E′d

+

JĖ′
qPe

JĖ′
qQe

J
Ė′
dPe

J
Ė′
dQe


∆Pe

∆Qe

+

1/T ′
do

0

∆Efd (4.67)

where:

JĖ′
qE

′
q

=
−1

T ′do
− (xd − x′d)

x′dT
′
doD

[D + V0
2(1− cos(2δ′0 − 2θ0)) + E′0V0 cos(2δ′0 − δ0 − θ0)] (4.68)

JĖ′
qE

′
d

=
−(xd − x′d)
x′dT

′
do

V0

D
[E′0 sin(2δ′0 − δ0 − θ0)− V0 sin(2δ′0 − 2θ0)] (4.69)

J
Ė′
dE

′
q

=
−(xq − x′d)
x′dT

′
qo

V0

D
[E′0 sin(2δ′0 − δ0 − θ0)− V0 sin(2δ′0 − 2θ0)] (4.70)

J
Ė′
dE

′
d

=
−1

T ′qo
− (xq − x′d)

x′dT
′
qoD

[D + V0
2(1 + cos(2δ′0 − 2θ0))− E′0V0 cos(2δ′0 − δ0 − θ0)] (4.71)

JĖ′
qPe

=
(xd − x′d)[2V0 sin(δ′0 − θ0)− E′d0]

T ′doD
(4.72)

JĖ′
qQe

=
(xd − x′d)E′q0

T ′doD
(4.73)

J
Ė′
dPe

=
(xq − x′d)[E′q0 − 2V0 cos(δ′0 − θ0)]

T ′qoD
(4.74)

J
Ė′
dQe

=
(xq − x′d)E′d0

T ′qoD
(4.75)

The state space system for the linearized two-axis model can be formed by using

(4.45) (where (4.67) is plugged in), linearizing (4.33), and adding (4.67) to form the states

equations. (4.53) forms the observation equation. The resulting state space system is:



∆̇δ

∆̇ω

˙∆E′q

˙∆E′d


=



0 1 Jδ̇E′
q

Jδ̇E′
d

0 0 0 0

0 0 JĖ′
qE

′
q

JĖ′
qE

′
d

0 0 J
Ė′
dE

′
q

J
Ė′
dE

′
d





∆δ

∆ω

∆E′q

∆E′d


+



Jδ̇Pe Jδ̇Qe

−ω0/2H 0

JĖ′
qPe

JĖ′
qQe

J
Ė′
dPe

J
Ė′
dQe


∆Pe

∆Qe

+



Jδ̇Efd

0

1/T ′
do

0


∆Efd

(4.76)
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∆θ

∆V

 =

1 0 JθE′
q

JθE′
d

0 0 JV E′
q

JV E′
d




∆δ

∆ω

∆E′q

∆E′d


+

JθPe JθQe

JV P JV Qe


∆Pe

∆Qe

 (4.77)

where:

Jδ̇E′
q

=
E′d0JĖ′

qE
′
q
− E′q0JĖ′

dE
′
q

E′0
2 (4.78)

Jδ̇E′
d

=
E′d0JĖ′

qE
′
d
− E′q0JĖ′

dE
′
d

E′0
2 (4.79)

Jδ̇Pe =
E′d0JĖ′

qPe
− E′q0JĖ′

dPe

E′0
2 (4.80)

Jδ̇Qe =
E′d0JĖ′

qQe
− E′q0JĖ′

dQe

E′0
2 (4.81)

Jδ̇Efd =
E′d0

T ′doE
′
0

2 (4.82)

4.4.1.2 Sub-set Selection and System Downsizing

The system (4.76)-(4.77) includes many parameters which can be estimated but

with different degrees of success. [39] proposes to use sensitivity matrix to select a sub-set

of parameters to be estimated. Sensitivity matrix is used to study the impact of the various

parameters on the output of a system, in other words, it tries to find the most influential

and the least influential parameter on the output.

Mathematically speaking, the sensitivity matrix of the system (4.76)-(4.77) is the

Jacobian matrix χ of the output Y wrt. M=
{
x′d, H, xq, xd, T

′
do, T

′
qo

}
.

χij =
∂Yi
∂Mj

(4.83)

Accordingly, χ for the system (4.76)-(4.77) will be N × 6 where N is the total

number of samples.
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The importance of the sensitivity matrix in least squares based estimations (like

system identification) comes from the objective of the least squares estimation of mini-

mizing the output error by manipulating M around a value M0 [39] to find its estimate

M̂ :

M̂ = arg min
M

N∑
i=1

(Y (i)− Ŷ (i|M))2 (4.84)

M̂ = M0 + (χTχ)−1χT ζ (4.85)

ζ is the 1 × N error (noise) matrix associated with the output equation. A good

estimation of M will reduce the impact of ζ by having (χTχ) far from singularity. Should

(χTχ) be close to singular, then (χTχ)−1 will amplify the impact of ζ and distorts the

estimation of M.

Singular value decomposition (SVD) of χ provides an insightful relation between

each parameter singular value and the possibility of the least squares estimation to find a

good value of the parameter. The singular value decomposition of of χ is:

[Υ,S,Ω] = SVD(χ) (4.86)

χ = ΥSΩT (4.87)

Υ is N×N orthonormal matrix, Ω is 6×6 orthonormal matrix, and S is the singular

value matrix and is Υ is N × 6 matrix. The first 6 diagonal elements of S are the singular

values of χ and the rest of the matrix equals to 0.

The estimation of M around M0 can now be written as [39]:

M̂ = M0 +

6∑
i=1

oiu
T
i

si
ζ (4.88)

where oi, ui are the ith columns of Ω and Υ. si is the ith diagonal value of S.
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Equation (4.88) shows the inverse proportional impact of the singular value si

associated with a parameter Mi. As si decreases the error ζ introduces more distortion on

the estimated parameter and leads to a larger deviation from the correct value. Accordingly,

it is better to estimate the parameters with high singular values which also have the highest

impact on the output. In order to find the singular values, the matrix χ needs to be

calculated.

χ can be calculated analytically sometimes [85] in case the the associated differential

equations are simple enough and clear. In the case of (4.76)-(4.77) the input function U is

not defined analytically which makes better to find χ numerically. The sensitivity matrix χ

was calculated numerically [86] using finite differences by perturbating each parameter M

aside by a value h and then recording the output of the system Yh. The recorded output

before (Y ) and after (Yh) perturbation are used for the Jacobian calculation:

χ =
Yh − Y
h

(4.89)

Following the calculation of the χ, SVD wass performed in order to extract S:

S =



3.9 0 0 0 0 0

0 0.2 0 0 0 0

0 0 0.12 0 0 0

0 0 0 0.08 0 0

0 0 0 0 0.04 0

0 0 0 0 0 0.03


(4.90)

It was found that x′d is associated with 3.9, H with 0.2, xq with 0.12, xd with 0.08,

T ′qo with 0.04, T ′Ddo with 0.03. In order to to test the estimation system, it was decided to

estimate the parameters associated with the highest singular values (which they have the

most impact on the output) and consider the rest of the parameters (which they have the
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least impact on the output) to be known. Accordingly, the set of unknown parameters M

to be estimated M= {x′d, H, xq, xd}.

The state space system (4.76)-(4.77) can be downsized into a system with two states

only δ and ω with an additive error Err1 and Err2, since the equations of these two states

include all the parameters in M.

∆̇δ

∆̇ω

 =

0 1

0 0


∆δ

∆ω

+

 Jδ̇Pe Jδ̇Qe

−ω0/2H 0


∆Pe

∆Qe

+ Err1 (4.91)

∆θ

∆V

 =

1 0

0 0


∆δ

∆ω

+

JθPe JθQe

JV P JV Qe


∆Pe

∆Qe

+ Err2 (4.92)

The system (4.96)-(4.97) is state space model written as:

Ẋ = [A]X + [B]U + Err1

Y = [C]X + [D]U + Err2 (4.93)

with the state vector X = [∆δ ∆ω]T , the observation (or measurement) vector Y =

[∆θ ∆V ]T , the input vector U = [∆Pe ∆Qe]
T , and the error vectors Err1 and Err2.

4.4.1.3 System Stabilization

The Eigenvalues of [A] as shown in 4.91 are zeros which risks instability. [A] will

be slightly modified to ensure stability. [A] as a general (2×2) matrix has the following

form:

[
A

]
=

a b

c d

 (4.94)
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Taking b = 1 and (a c d→ 0) then [A] has the following two Eigenvalues:

λ1,2 ≈
a+ d

2
±√c(1 +

a2 + d2 − 2ad

8c
) (4.95)

A simple solution to stabilize [A] by making the real parts of λ1,2 < 0 and main-

taining (a c d → 0) is to take (a = 0, c = d = ε < 0, ε → 0). The simulation part will

show the effects of various values of ε.

Accordingly, the proposed model state space system to be estimated is written as:

∆̇δ

∆̇ω

 =

0 1

ε ε


∆δ

∆ω

+

 Jδ̇Pe Jδ̇Qe

−ω0/2H 0


∆Pe

∆Qe

+ Err1 (4.96)

∆θ

∆V

 =

1 0

0 0


∆δ

∆ω

+

JθPe JθQe

JV P JV Qe


∆Pe

∆Qe

+ Err2 (4.97)

Err1 =

 Jδ̇E′
q

Jδ̇E′
d

ε∆δ/∆E′
q

ε∆ω/∆E′
d


∆E′q

∆E′d

+

Jδ̇Efd
0

∆Efd (4.98)

Err2 =

JθE′
q

JθE′
d

JV E′
q

JV E′
d


∆E′q

∆E′d

 (4.99)

The model in (4.101) and(4.97) will be referred to as ’model 2’ whereas the the

model without the terms Jδ̇Pe and Jδ̇Qe will be referred to as ’model 1’. ’Model 1’ is more

similar to classical model than ’model 2’.

The set of unknown parameters M to be estimated is:

M = (x′d, H, xd, xq). (4.100)
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The unknown parameters are observed in the state space system as follows: x′d in

(JθPe , JθQe , JV Pe , JV Qe), H in −ω0/2H, and (xd, xq) in (JδPe , JδQe)
3. Knowing JδPe and

JδQe is not enough to estimate the rest of parameters δ0, E
′
d0, E

′
q0.

The system (4.96)-(4.97) is considered as grey box model [12] where the parameters

of the box take physical characteristics (e.g. H). The parameters of the system can

be estimated by a system identification software such as MATLAB System Identification

Toolbox.

4.4.2 Gray Box Model and Error Quantification

The grey box (4.96)-(4.97) subject to system identification is modeled as:

Ẋ = [A]X + [B]U + [K]e (4.101)

Y = [C]X + [D]U + e (4.102)

[A], [B], [C], [D] are parametrized matrices, [e] is a noise formed by formulation

errors and [K] is used to fine tune the estimation by varying the impact of the noise e in

the state space system.

The system identification algorithm for a grey box does iterative search to minimize

an error function. The general iterative search is a prediction-error identification method

(PEM)which minimizes a function of the error between the real output Y and the predicted

output Ŷ (M) [12].

M̂ = arg min
M

VN (M,U, Y ) (4.103)

where ” arg min ” stands for minimizer of the error function VN by modifying M , and

having U as input, Y as output, and N as the number of outputs.

A basic choice for VN is the quadratic function:

VN =
1

N

N∑
n=1

(Y (n)− Ŷ (n|M))2 (4.104)
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The outcome of the system identification of (4.96)-(4.97) is different solutions for

M , i.e. Mk = Hk, x
′
dk pending on the value of [k]. The optimum set of M and value of [K]

will be chosen by the validation process. The values associated with [K] are very influential

and in the case of (4.96)-(4.97) can be shown to be:

[K] = Err1/Err2 (4.105)

One solution for (4.105) is:

[K] =


JδE′

q
∆E′

q+JδE′
d

∆E′
d

JθE′
q
∆E′

q+JθE′
d

∆E′
d

0

0 0

 (4.106)

Equation (4.106) shows that [K] depends on the machine and system operating

conditions (due to JδE′
q
,∆E′q, JδE′

d
,∆E′d, JθE′

q
,∆E′q, JθE′

d
,∆E′d) and varies with time (due

to ∆E′q,∆E
′
d). A detailed quantification of K under various four various operating condi-

tions combining high and low active and reactive power output of the machine is provided

under 4.4.3. An average [K0] of [K] will be calculated and various estimations resulting by

varying [K] around [K0] will be validated.

4.4.3 Simulation and Validation

Two cases will be studied, the first one is single machine infinity bus (case 1) and

the second one is four-machine two-area system (case 2). Four sets of measurements for

Pe, Qe, V, andθ will be taken following a three phase line to ground fault at a point right

outside the machine or the power sub-system (case 2).

Small signal quantities ∆Pe,∆Qe,∆V and ∆θ were derived by removing the steady

state value of the measurements. ∆Pe and ∆Qe were considered as the input and ∆V and

∆θ were considered as output. Both systems representing ’model 2’ in (4.96)-(4.97) and

’model 1’were implemented with MATLAB System Identification Toolbox grey box. The

input and output data sets were divided, time wise, to two subsets. The first subset of few
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Model 1

Model 2

Input

Output

Δ,ΔV

Δ,ΔV

ΔPe, ΔQe

Figure 4.28. Validation process of proposed model

seconds was used in the estimation along with few values of K around K0. The second

subset was used in the validation process along with specific values for K.

The simulation data is shown in Appendix B.

4.4.3.1 Validation

The purpose of the validation process is to test the output (∆θ,∆V ) of ’model 2’

and the output of ’model 1’ against the output of the simulated machine. The comparison

process between both models is shown in Fig 4.28.

Once the grey models are estimated, the models of Fig. 4.28 were implemented

in Simulink and fed with the input ∆Pe,∆Qe in addition to the estimated parameters.

The output of the Simulink system and the states (∆δ and ∆ω) will be compared to the

simulated output and mechanical states ∆δ′ and ∆ω.

4.4.3.2 Case 1: Single Machine Infinity Bus

A single machine infinity bus was built using MATLAB SimPowerSystems (Fig.

4.29) with G1 representing the machine and the transmission network repressing the infinity

bus. The model is a detailed 8th order model, six for the electromagnetic subsystem and

two for the mechanical subsystem.
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θ,V Transmission 
Network 

PMU 

G1 

ee, QP

Figure 4.29. System configuration

The operating conditions for G1 were set to deliver high active power (1 pu) and

relatively high reactive power (0.25) with a power factor of 0.97. The data of case 1 are

shown in Fig 4.30.
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)
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∆V
 (

pu
)

Time (s)

Figure 4.30. Case 1: Input and output of the system

The simplified case of k = 0 was used for the estimation process because it not

possible to calculate a priori k for the machine subject to estimation. ε was set to -0.1 as

per Section 4.91.

The initial estimated parameters using ’model 2’ are {H, x′d, Jδ̇Pe , Jδ̇Qe}. Should

T ′do, T
′
qo, δ

′ be known, then {xq, xd} can be extracted from {Jδ̇Pe , Jδ̇Qe}. For ’model

1’, the estimated parameters are {H, x′d}. The results of the estimation for both ’model

1’ and ’model 2’ in addition to the cost function are displayed in Table 4.5 where It is

assumed that the simulated machine, being the base model, has a cost of 0.
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Figure 4.31. Case 1: k progress with time

Table 4.5. Case 1: Estimated parameters for ’model 2’ and ’model 1’
Parameter H x′d Jδ̇Pe Jδ̇Pe xq xd cost

Simulated machine 3.7 0.4 -0.43 0.45 1.81 1.81 0

model 2 (k = 0) 3.68 0.37 -0.43 0.32 1.52 2.65 2.5e−11

model 1 (k = 0) 3.66 0.37 - - - - 2.6e−10

The estimated systems (matrices [A], [B], [C], [D]) for both ’model 2’ and ’model

1’ along with the input data were fed to the validation systems (part of MATLAB System

Identification) as shown in Fig. 4.28. The output {∆θ, ∆V } of the validation system

compared with the simulated one is shown in 4.32. The model was built with MATLAB

Simulink (ε = −0.5 was needed) in order to show a comparison of the states (∆δ and ∆ω)

(Fig. 4.33).

The following remarks can be made:

1. The common estimated parameters (H, x′d) of both ’model 2’ and ’model 1’

are close to the simulated ones.

2. ’model 2’ provides a good estimation for xq provided some additional informa-

tion are available. ’model 1’ which is closer the the classical machine model

cannot give any indication on xq.
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Figure 4.32. Case 1: Validation of the output

3. The validated output ∆θ of ’model 2’ is closer to the simulated one than the

output ∆θ of ’model 1’ as displayed in Fig. 4.32.

4. ’model 2’ catches the mechanical dynamics of the simulated machine batter

than ’model 1’ as evidenced by Fig. 4.33.

4.4.3.3 Case 2: Subsystem Identification

The purpose of this case is to represent Area 1 machines (Fig. 4.34) by one single

machine and run the estimation algorithm to find the equivalent machine parameters.

Validation of the estimated machine will show if the equivalent machine truly represents

Area 1. A similar approach can be used to represent Area 2 then the whole system can be

scaled down to two equivalent machines connected by a radial transmission line.

The simulation was carried out in Power System Toolbox (PST) [77]. The simulated

machines are similar and were built around sub-transient model and equipped with dc

exciters and governors. The simulation details are shown in the appendix. Input and

Output data were extracted in bus 20 were a PMU is supposed to be installed. The

primary angle data (θ) suffers from trending as shown in Fig. 4.35, hence a preprocessing
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Figure 4.33. Case 1: Simulated and validated mechanical states
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Figure 4.34. Case 2: Four-machine two-Area System

of input and output was done by removing the first five seconds and by removing the linear

trend in θ. The resulting input and output data are shown in Fig. 4.36

The estimation algorithm was run on the first few seconds of the data (Fig. 4.36)in

order to extract the equivalent machine based on both ’model 2’ and ’model 1’.

The stabilizing term ε formulated in Section 4.91 is set to -0.9 which is higher than

-0.1 used in case 1 (Section 4.4.3.2). The value -0.9 for ε is still small compared to the

other factor (−ω0/2H) affecting ∆ω̇ which is around -15. The reason for higher negative

feedback in matrix A is:
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Figure 4.35. Case 2: Trend in angle output θ
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Figure 4.36. Case 2: De-trended input and output

1. The losses on the transmission lines inside the power subsystem: As δ gets big-

ger, Pe from every machine gets bigger while the mechanical input is considered

constant, which means ω will get smaller. This causes the negative impact of δ

on ω̇.

2. The presence of local damping within the power subsystem. The two machines

in the subsystem are never completely synchronized which creates a mutual

damping effect (albeit small) between them. Damping is modeled usually as a

negative impact of ω on ω̇
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Figure 4.37. Case 2: Validated output of ’model 2’ and ’model 1’

Table 4.6. Case 2: Estimated parameters of ’model 2’ and ’model 1’
Parameter H x′d cost function

Simulated equivalent machine 13 0.27 0

’model 2’ (k = 0) 12.3 0.31 2.5e−11

’model 1’ (k = 0) 16 0.31 4.4e−10
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Figure 4.38. Case 2: The impact of varying ε on the angle output of ’model 2’ and ’model
1’
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Similar to case 1 in Section 4.4.3.2, the simplified case of k = 0 was used. The

estimated parameters along with the cost function provided by the system identification

algorithm are shown in Table 4.6. It is assumed that the simulated machine, being the

base model, has a cost of 0. The simulated equivalent machine of the power subsystem

has theoretically a total inertia equals the sum of the inertias of its individual machines

(when perfectly coherent) and a transient reactance equals the Thevenin equivalent of the

reactances seen from bus 20 (i.e. H = 13 and x′d = 0.27).

The validated output of ’model 2’ and ’model 1’ are shown in 4.37. The impact of

various values for ε on angle validation is shown in Fig. 4.38, which clearly shows the the

proposed model is better in every case. The impact on ∆V was insignificant.
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CHAPTER 5: CONCLUSION AND FUTURE WORK

The dissertation conducted research in the model estimation of power systems based

on PMU data due to its importance as shown in Section 1.3. The studied power systems are

either a single synchronous machine or power generating are formed of multiple synchronous

machines (in Section 4.4.3.3 for example). The dissertation brings incremental knowledge

to the power systems and smart grid research area. Such incremental benefit is evidenced

by the peer reviewed papers from this dissertation ([78, 60] are published,[61, 79] are in

2nd round review).

In particular, the dissertation research benefits are summarized in the following

conclusions:

5.1 Source of Data

The research explored the use of PMU data in model and parameter estimation.

The results prove that one PMU can be the sole provider of data in order to estimate the

parameters of synchronous classic and flux decay models and power systems all subject

to electro-mechanical dynamics. Such outcome is shown in Chapter 3 and in Chapter 4

and in [78, 60, 61, 79]. When PMU data is supplemented by additional data then more

parameters can be estimated (Section 4.4.3.2 for example).

5.2 Estimation Techniques Algorithms

The research examined two approaches for the estimation and validation problem

i) LSE based on the time window of data coupled with FN or as System Identification and

ii) non-linear Kalman Filter extensions namely EKF and UKF.
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The research showed that EKF coupled with new decoupling technique can be used

to estimate four parameters and two states of the classical machine model (Section 3.3 and

[61]). UKF method was also shown to be effective in estimating parameters and states of

the flux decay model (Section 3.4 and [60]). The UKF implementation as dual filter with

colored noise solved the problem of rotor angle and xq simultaneous estimation.

Using LSE for parameters estimation required either the use of finite differences

or System Identification. Finite differences technique estimated some states and their

derivatives wrt. time numerically and transformed the problem into a linear overestimated

problem which was solved with LSE (Section 4.3 and [78]). The System Identification

approach estimated the parameters of a linearized model of the synchronous machine using

a grey box (Section 4.4.3.2) and of a power subsystem (Section 4.4.3.3). The sub-set

selection analysis provided good insight to the precision to which the parameters can be

estimated (Section 4.4.2 and Table 4.5). The validation of the developed model output was

closer to the simulated output compared with the classical machine model (Fig. 4.37).

5.3 Impact of Machine Model Differences and Controls on the Estimation

Quality

The developed algorithms (Section 5.2) provided a precise estimate when the ma-

chine estimated model and the simulated model have the same complexity or state space

system (Set 1 and Set 2 in Section 3.3.4, and Section 3.4.5).

The developed algorithms provided a good estimate when the machine simulated

model is more complex (higher order) than the estimated model (Set 3 in Section 3.3.4,

Sections 3.4.6 and 4.3.2.1).

The machines controls (AVR and governor) were found to induce deviations in the

estimated values of the parameters and the research explained the cause of such deviations

(Set 4 in Section 3.3.4, and Section 4.3.2.2). In the case of System Identification, the use

of exciter (with AVR) did not affect all estimated parameters (Section 4.4.3.2).

112



www.manaraa.com

In the case of model estimation of a power subsystem formed of multiple machines,

System Identification algorithm with the developed linearized machine model provided

better output than the classical machine model (Section 4.4.3.3).

Estimation of real power subsystems in the electric grid in the United States carried

out in Section 4.3.3 showed the need for low pass filter in order to eliminate the impact of

white noise.

5.4 Further Research

Further research can be extended from the research in this dissertation to cover:

1. How the developed model and parameter estimations can be applied on other

types of power systems. The reliance on the one single PMU at the output of

the power subsystem to provide the input and the measurement data makes this

approach independent from the rest power system. Such independence makes it

suitable to use it in parallel across a transmission network at the output of syn-

chronous machines powerplant, or wind farm built around induction generators

not synchronous generators.

2. How sampling rate affect parameter estimation. In Section 4.4, it was shown

that some parameters estimated parameters were far from the simulated pa-

rameters. The sampling rate affect the precision of sensitivity matrix which in

turn affects the quality of the estimation.

3. How to improve a poor estimation model for some parameters as shown in

Section 4.4.1.2 due to poor observation function.
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Appendix A: Nomenclature

Synchronous Machine Parameters

xd, xq : d, q axis reactance
x′d, x

′
q : d, q axis transient reactance

x′′d, x
′′
q : d, q axis sub-transient reactance

rs : Stator resistance
Efd : Field voltage
E′d, E

′
q : d, q axis transient voltage

T ′do, T
′
qo : d, q axis transient open circuit time constant

T ′′do, T
′′
qo : d, q axis sub-transient open circuit time constant

Id, Iq : d, q axis current
Pe, Qe : Active, reactive electrical power :
V , θ : Magnitude and angle of output phasor voltage
H : Machine inertia
δ′, ω : Rotor angle and speed
ω0 : Rotor steady state angular speed≈ 376.99
Pm : Mechanical power
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Appendix B: Simulation Data

Chapter 3 cases

Simulations in Section 3.4.4 were carried out in Power System Toolbox [77] with

the following machine details:

xl=0.2, ra=0.0, xd=1.8, x
′
d=0.25, x

′′
d=0.2, T

′
do=8, T

′′
do=0.03, xq=1.5, x

′
q=0.25, x

′′
q=0.2,

T
′
qo=0.4, T

′′
qo=0.05, H=6.5 (G1), D=3.

Data for Section 4.3 cases

Simulations in Section 4.3.2 were done using Power System Toolbox [77]. Machines

details: G1 and G2: xl=0.2, ra=0.2, xd=1.8, x′d=0.25, x”d=0.2, T ′do=8, T”do=0.03, xq=1.7,

x′q=0.55, x”q=0.24, T ′qo=0.4, T”qo=0.05, H=6.5 (G1), H=16.5 (G2). Exciter: Simple

exciters with Tr=0, Ka=200, Ta=0.05, Tb=10, Tc=1, Vrmax=5, Vrmin=-5, the rest of the

parameters are equal to zero. Governor: Simplified turbine governor with wf=1, 1/R=35,

Tmax=1, Ts=1, Tc=0.5, T3=0, T4=1.25, T5=5.

Section 4.4 cases

Simulations in Section 4.4.3.2 were carried out in MATLAB SimPowerSystems with

the following machine details:

H = 3.7 s, x′d = 0.4 pu, x′q = 0.4 pu, xd = 1.81 pu, xq = 1.81 pu, rs = 0, x′′d =

0.15 pu, x′′q = 0.15 pu, T ′d0 = 8 s, T ′q0 = 1 s, T ′′d0 = 0.03, T ′′q0 = 0.07 s. Exciter:

Tr = 0 s, Ka = 200, Ta = 0.03 s, Ke = 1, Te = 0.1 s, Tb = 5 s, Tc = 0.3 s, Kf =

2.5e−3, Tf = 0.21 s, Efmin = −11.5, Efmax = 11.5, Kp = 0

Simulations in Section 4.4.3.3 were carried out in Power System Toolbox [77] with the

following details:

Machines: MVA base = 900, H = 6.5 s, D = 3, x′d = 0.3 pu, x′q = 0.55 pu, xd =

1.8 pu, xq = 1.7 pu, rs = 0.0025, x′′d = 0.25 pu, x′′q = 0.25 pu, T ′d0 = 8 s, T ′q0 =
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Appendix B (Continued)

0.4 s, T ′′d0 = 0.03, T ′′q0 = 0.05 s.

DC Exciters: Tr = 0.01 s, Ka = 46, Ta = 0.06 s, Ke = 0, Te = 0.46 s, Tb = 0 s, Tc =

0 s, Kf = 0.1, Tf = 1 s, V rmin = −0.9, V rmax = 1, E1 = 3.1, Se(E1) = 3.1, E2 =

0.33, Se(E2) = 2.3

Governor: Simplified turbine governor with wf=1, 1/R=25, Tmax=1, Ts=0.1, Tc=0.5,

T3=0, T4=1.25, T5=5.
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To: Yasser Wehbe <ywehbe@gmail.com>

Hello,
That's fine. All we ask is that you acknowledge the source (Power Information Technology Lab, University of
Tennessee) in your work.

Thanks,
PENN

On 9/7/2012 1:37 PM, Yasser Wehbe wrote:

Dear Sirs,

I am contacting you to seek permission to use materials from your website in my dissertation.

I am a PhD student at the University of South Florida working with Dr. Fan on parameters
estimation using PMUs data. The work FNET has done is remarkable and I would like very much to
include graphs obtained with PMU and published on your website. The graph I would like to use in
my dissertation for now is angle contour map (http://fnetpublic.utk.edu/anglecontour.html).

If you kindly agree on my use of the FNET materials then I would highly appreciate providing me
with any statement or policy you would like me to insert in my dissertation.

Looking forward to hearing from you.

Yasser WEHBE
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Appendix C (Continued)

NERC Copyright Permission

 

 

Copyright Notice 
 
 

All materials posted or otherwise available on the this web site are the exclusive copyrighted material 
of the authors or the North American Electric Reliability Corporation (NERC). Permission is granted to 
copy and distribute (via computer network or printed form) in whole or in part (with appropriate 
citation) EXCEPT when such materials will be used, in whole or in part, within a commercial publication 
(printed or otherwise) or when the author or NERC will be quoted in commercial materials, forums, or 
publications. Commercial use of these materials requires expressed written authorization from the 
author or NERC.  
 
Use of the logo and/or name of the North American Electric Reliability Corporation (“NERC”) is not 
permitted without the prior express written authorization of the North American Electric Reliability 
Corporation.  
 
Any and all inquiries regarding this prohibition should be addressed to:  
 

General Counsel 
 North American Electric Reliability Corporation 
 1325 G Street, N.W. 
 Suite 600  
 Washington, DC  20005 
 202-400-3000 
 
Links to NERC's web site from other web sites are permitted and encouraged. 
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Appendix C (Continued)

Dr. George Gross Copyright Permission
9/ 26/ 12 G m ail -  Char t  use per m ission r equest

1/ 2ht t ps: / / m ail. google. com / m ail/ u/ 0/ ?ui=2&ik=d636b0af 6f &view=pt &q=gr oss&qs=t r ue&sear ch=quer y&m sg…

Yasser Wehbe <ywehbe@gmail.com>

Chart use permission request

Gross, George <gross@illinois.edu> Sun, Sep 16, 2012 at 2:14 AM
To: Yasser Wehbe <ywehbe@gmail.com>

Yasser, Habibi

Go ahead and use the charts you need. Good Luck with your thesis!

On Sep 15, 2012, at 3:16 PM, Yasser Wehbe wrote:

Dear Dr. Geroge Gross,

I am contacting you with regards to permission to use one of your charts in my dissertation. 

I am a Ph.D. student at the University of South Florida researching power system models
estimation under the supervision of Dr. Lingling Fan. While I was reading your course handouts
(Analysis Techniques for Large Scale Electrical Systems) I came on a chart summarizing power
system dynamics time scales. I am kindly requesting the permission to use this chart in
my dissertation. 

The presentation web address is: http://courses.engr.illinois.edu/ece530/Lectures/Lecture%201-
%20Introduction%20and%20Overview%202012.pdf

Of course I will be more than happy to show your chart copyrights in the way you see appropriate.

Thank you very much.

Yasser WEHBE

George Gross

Professor of Electrical and Computer Engineering, and 

Professor, Institute of Government and Public Affairs (IGPA)  

University of Illinois at Urbana-Champaign      

339 Everitt Laboratory  

1406 W. Green Street

Urbana, IL 61801  

Office : (217) 244-6346               

Fax :    (217) 333-1162 

e-mail : gross@illinois.edu
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Appendix D: List of Publications

1. Y. Wehbe and L. Fan, ”Estimation of a Shunted Radial Transfer Path Dynamics

Using PMUs”, in the proceedings of the IEEE PES General Meeting 2011

2. L. Fan and Y. Wehbe, ”RTDMS Data Analysis”, technical report submitted to

Midwest ISO, 2011

3. Y. Wehbe and L. Fan, ”UKF Based Estimation of Synchronous Generator Elec-

tromechanical Parameters From Phasor Measurements”, in the proceedings of

the 44th North American Power Symposium, 2012

4. Y. Wehbe, L. Fan and Z. Miao, ”Least Squares Based Estimation of Syn-

chronous Generator States and Parameters with Phasor Measurement Units”,

in the proceedings of the 44th North American Power Symposium, 2012

5. L. Fan and Y. Wehbe, ”EKF-Based Real-time Dynamic State and Parameter

Estimation Using PMU Data”, 2nd round review by IEEE Transactions on

Smart Grid

6. L. Fan, Z. Miao, and Y. Wehbe, ”Application of State and Parameter Estima-

tion Techniques on Real-World Data”, 2nd round review by IEEE Transactions

on Smart Grid

7. Y. Wehbe and L. Fan, ”Modified Classic Generator Model and Its Applications

in PMU Data Based System Identification”, to submit to IEEE Transactions

on Smart Grid

8. L. Fan and Y. Wehbe, ”Electromechanical Dynamic State and Parameter Es-

timation Using PMU Data”, presented at the NASPI RITT workshop, Feb.

2012
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